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Introduction

These notes are meant to be a quick introduction to some of the ideas of
geometric algebra and geometric calculus, somewhat in the spirit of Alan
Macdonald’s A Survey of Geometric Algebra and Geometric Calculus, [6].
Macdonald’s paper can be obtained free at the indicated web address, it
touches on topics which we do not cover, and it is highly recommended.

This is a Crash Course in that it is meant to be quick and superficial with
essentially all proofs omitted. We hope that these notes will, nevertheless,
give the reader some feel (however inadequate) for how geometric algebra
and geometric calculus work.

The plan at this point is that this superficial crash course will be eventually
followed by a much more detailed work [12].

In the meantime, the impatient reader who wants to get into the meat of
the topic can consult the two introductory books [8] and [9] by Macdonald, the
volume [3] by Hestenes and Sobczyk which is often considered the “bible” for
this material, or a recent book [11] by Sobczyk. Those who would like to see
an introductory book aimed at physicists may wish to look at [2] by Doran
and Lasenby. There is also a set of online notes by Alan Bromborsky, [1],
that seems aimed at a general mathematical audience.

The reader should have a modest acquaintance with linear algebra and a
knowledge of multivariable calculus as presented in an introductory calculus
course.

We shall use Greek letters, α, β, χ, η, and so forth for real numbers and
Latin letters, a, b, x, y, z, etc. for vectors and multivectors. The symbol R
stands for the set of real numbers and Rn for the set of ordered n-tuples of
real numbers. Given x = (χ1, . . . , χn) in Rn, sometimes we think of this as a
point, sometimes as a vector, depending on what we want to do.

iii



INTRODUCTION iv

Also, in Rn, we shall use the symbols e1, . . . , en for the standard basis
vectors. That is, ei is the unit vector in the positive direction parallel to the
ith-axis in Rn. Thus in R3,

e1 = (1, 0, 0),

e2 = (0, 1, 0),

e3 = (0, 0, 1).



Chapter 1

Simple k-Vectors

Our first step in understanding geometric algebra is to construct what are
called k-vectors. In this chapter we look at special kinds of k-vectors, the
simple k-vectors, which have a very nice geometrical interpretation. We move
in the next chapter to general k-vectors.

Our presentation is rapid and superficial. Details about the construction
of k-vectors and a number of proofs of their properties can be found in [5],
The Wedge Product and Analytic Geometry, and in [12] (when it appears). A
link to a copy of [5] can be found online at http://www.mdeetaylor.com/
?page_id=286.

1.1 Definition
A vector x = (χ1, . . . , χn) in Rn will also be referred to by us as a 1-vector.
It is usual to picture a vector (1-vector) as a directed line segment. This is
useful for applications and helpful for the intuition.

Any two directed line segments are said to represent the same vector pro-
vided they have the same magnitude, direction, and orientation with respect
to that direction. All such directed line segments may be considered to start
at the origin; if you translate a directed line segment without altering its
length, direction, or orientation, then it is considered to repesent the same
vector. If we consider Figugre 1.1, then a and b represent the same vector.
On the other hand, c represents a different vector than a because, although
it has the same direction as a in the sense that it is parallel to a, it is ori-
ented in the opposite direction. And d is not the same vector as a because it

1



CHAPTER 1. SIMPLE K-VECTORS 2

a b
e

c

d

Figure 1.1: Vectors as directed line segements

has a different magnitude (length), while e is different because it points in a
different direction from a.

We want to introduce the idea of a k-vector where k = 0, 1, 2, 3, . . ..
Actually, what we shall discuss at this point is simple k-vectors.

The 1-vectors are just what we ordinarily think of as vectors. By 0-vectors,
we mean scalars, that is, real numbers.

To see what we mean by a simple 2-vector, notice that if we choose two
vectors a1 and a2 in Rn, they determine a parallelogram. (Figure 1.2.) We

a1

a2

Figure 1.2: A simple 2-vector

think of this as being a representative of a simple 2-vector much in the sense
in which we thought of a directed line segment as representing a vector. The
symbol we use for this simple 2-vector is

a1 ∧ a2.
Just as with 1-vectors, we may think of simple 2-vectors as constructed from
vectors starting at the origin. If we translate the associated parallelogram
to a different location—translation in which we are careful not to rotate the
parallelogram out of its defining plane—then it still represents the same
simple 2-vector.

The three properties we associated with directed line segments have
analogs here: magnitude, direction, orientation.
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By the magnitude of a1 ∧ a2, we mean the area of the associated paral-
lelogram. It turns out that the area of the parallelogram is given by

magnitude of a1 ∧ a2 =

√
det

(
a1 • a1 a2 • a1
a1 • a2 a2 • a2

)
where ai • aj is the dot product of ai and aj . (The knowledgeable reader
may note that this looks suggestive of the distance formula in n-dimensional
geometry. It should, and it generalizes.)

When we talk about two simple 2-vectors—say, a1 ∧ a2 and b1 ∧ b2—then
the analog to having the same direction is that they must both lie in the same
plane, that is, in the same two-dimensional vector subspace V of Rn. (See
Figure 1.3.) If they do not lie in the same two-dimensional vector subspace,

a1

a2
b2

b1

V

Figure 1.3: a1 ∧ a2 and b1 ∧ b2 lying in V

then they are considered to “have different directions.”
As for orientation, this is analogous to both simple 2-vectors being “right-

handed” or “left-handed.” The orientations of a1 ∧ a2 and b1 ∧ b2 can only
be compared if they both lie in the same two-dimensional vector subspace.
The reason for this is that if you pick a1 ∧ a2 up out of the plane in which
it lives, flip it over in 3-dimensional space, and drop it back into the plane,
as in Figure 1.4, then it switches from being “right-handed” to “left-handed”
and is now written as a2 ∧ a1.

If one has two simple 2-vectors a1 ∧ a2 and b1 ∧ b2 lying in the same two-
dimensional vector subspace V , then to see if they have the same orientation
or not, one checks the sign of

det

(
a1 • b1 a2 • b1
a1 • b2 a2 • b2

)
. (1.1)
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Flip!

a1

a2

−a1

a2a1 ∧ a2

a2 ∧ a1

Figure 1.4: “Flipping” a 2-vector to change its orientation

If this is positive, then a1 ∧ a2 and b1 ∧ b2 are considered to have the same
orientation; if it is negative, they have opposite orientations. If (1.1) is zero,
then the parallelogram of one of the two simple 2-vectors (or perhaps both of
them) must be degenerate, that is, a figure of zero area. If a1 ∧ a2 and b1 ∧ b2
lie in different planes, then we consider their orientations to be incomparable.
Notice that the order in which a1 and a2 occur in the expression a1∧a2 plays
an important role here, and it is easy to check that unless the parallelogram
is degenerate, a1 ∧ a2 and a2 ∧ a1 must always have opposite orientations.

Now here is the important point:
We consider a1∧a2 and b1∧ b2 to be the same simple 2-vector if and only

if they have the same magnitude (area), direction (lie in a common plane),
and orientation (handedness).

These considerations may be generalized to define simple k-vectors.
Suppose we have an ordered k-tuple (a1, . . . , ak) of vectors in Rn; that

is, each ai is a vector in Rn so can presumably be written in the form ai =
(λi1, . . . , λin) where each λij is a real number. Each such ordered k-tuple
generates a k-dimensional parallelepiped having a1, . . . , ak as its edges. (See
Figure 1.2 for k = 2. For k = 3, see Figure 1.5.)

We leave it to the reader to play with the idea that each x in Rn is a point
of the parallelepiped if and only if we can write x (considered as a vector)
in the form x = τ1a1 + · · · + τkak for some choice of scalars τ1, . . . , τk where
0 ≤ τi ≤ 1 for each i. The vertices of the parallelepiped are those points
where the scalars τi are all chosen to be 0 or 1.

Given a parallelepiped with edges a1, . . . , ak, we take its k-dimensional
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a1

a2

a3

Figure 1.5: 3-dimensional parallelepiped

volume to be

vol(a1, . . . , ak)
def.
=

√√√√√det

a1 • a1 · · · a1 • ak
· · ·

ak • a1 · · · ak • ak

.
This always turns out to be a nonnegative real number.

Of course,

1-dimensional volume = length,
2-dimensional volume = area.

If vol(a1, . . . , ak) = 0, then we say that the parallelepiped is degenerate. One
can show that the parallelepiped with edges a1, . . . , ak is degenerate precisely
when a1, . . . , ak are linearly dependent vectors. Thus the parallelogram with
edges a1 and a2 is nondegenerate if and only if the parallelogram has positive
area.

Now to generalize orientation. To do this, we want to think of a k-
dimensional parallelepiped as being an ordered k-tuple of vectors (a1, . . . , ak).
Each ai is an edge. The order in which they are written determines the ori-
entation.

We do not directly define orientation; rather we define what it means to
say that two k-parallelepipeds (a1, . . . , ak) and (b1, . . . , bk) to have the same
orientation. This is sufficient for our purposes.

1. If {a1, . . . , ak} and {b1, . . . , bk} are both linearly dependent sets, then
(a1, . . . , ak) and (b1, . . . , bk) are considered to have the same orientation,
the 0-orientation.
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2. Suppose {a1, . . . , ak} and {b1, . . . , bk} are both linearly independent
sets and lie in the same k-dimensional vector subspace V of Rn. Then
(a1, . . . , ak) and (b1, . . . , bk) have the same (nonzero) orientation pro-
vided

det

a1 • b1 · · · a1 • bk
...

ak • b1 · · · ak • bk

 > 0.

If det(ai • bj)k×k < 0, then they have opposite orientations.

3. In all other circumstances, the orientations of the two k-tuples are non-
comparable.

We are now ready to define simple k-vector :

Definition 1. By the simple k-vector a1 ∧ · · · ∧ ak, where a1, . . . , ak ∈ Rn

and k ≥ 1, we mean the set of all ordered k-tuples (b1, . . . , bk) such that
(a1, . . . , ak) and (b1, . . . , bk) have the same orientation and volume.

If (a1, . . . , ak) has the 0-orientation (or, equivalently, vol(a1, . . . , ak) = 0),
then we write a1 ∧ · · · ∧ ak = 0.

We take R to be the set of simple 0-vectors.

Remark 1. We feel free to write vol(a1 ∧ · · · ∧ ak) or vol(a1, . . . , ak) for the
k-volume of a parallelepiped as the spirit moves us. It also turns out to be
convenient to denote the volume thus,

|a1 ∧ · · · ∧ ak| = vol(a1 ∧ · · · ∧ ak),

when we think of a1 ∧ · · · ∧ ak as actually being a vector in an appropriate
vector space and identify volume with the magnitude of that vector.

The following is very useful:

Proposition 1. Let a1, . . . , ak be vectors in Rn. Then the following are equiv-
alent:

1. a1 ∧ · · · ∧ ak = 0.
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2. a1, . . . , ak are linearly dependent.

3. vol(a1 ∧ · · · ∧ ak) = |a1 ∧ · · · ∧ ak| = 0.

Similarly, these conditions are equivalent:

1. a1 ∧ · · · ∧ ak 6= 0.

2. a1, . . . , ak are linearly independent.

3. vol(a1 ∧ · · · ∧ ak) = |a1 ∧ · · · ∧ ak| > 0.

1.2 Operations with simple k-vectors
We define three operations with simple k-vectors: Multiplication by a scalar
(a real number), the dot product, and the wedge product.

It should be noted that though we use the word “vector” in the expression
“simple k-vector,” these are not really vectors at all, at least not in the sense
of belonging to a vector space. The problem is that we have no operation of
addition. We shall remedy this lack in the next chapter.

Definition 2. For λ ∈ R and a k-blade a1∧· · ·∧ak, we define λ(a1∧· · ·∧ak) =
a1 ∧ · · · ∧ λai ∧ · · · ∧ ak for i = 1, . . . , k. By −a1 ∧ · · · ∧ ak we shall mean
(−1)(a1 ∧ · · · ∧ ak).

In Figure 1.6 we show two different ways we can represent 2(a1 ∧ a2)
as an oriented parallelogram. Of course the two oriented parallelograms are
equivalent.

Scalar multiplication has an obvious geometric interpretation: If you mul-
tiply one edge of an oriented parallelepiped by λ, then the volume changes
by a factor of |λ|. Thus

vol
(
λ(a1 ∧ · · · ∧ ak)

)
= vol(a1 ∧ · · · ∧ λai ∧ · · · ∧ ak)

= |λ| vol(a1 ∧ · · · ∧ ak).

If λ > 0, then the orientation is unchanged, but if λ < 0, then the orientation
is reversed. So a1∧ · · · ∧ak and −a1∧ · · · ∧ak have opposite orientations but
equal volume.
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a2

a1 ∧ a2

a2

a1

2(a1 ∧ a2)

a1
2a2

2a1

Figure 1.6: Two representations of multiplication by a scalar.

An important property of a1 ∧ · · · ∧ ak is that its volume is unchanged
by a permutation of a1, . . . , ak however the orientation is changed by an odd
permutation. Thus, for example,

a1 ∧ a2 = −a2 ∧ a1,
a1 ∧ a2 ∧ a3 = −a2 ∧ a1 ∧ a3 = a2 ∧ a3 ∧ a1.

A consequence of this is that if ai = aj for distinct indices i and j, then
a1 ∧ · · · ∧ ak = 0. The reason is that we must have

a1 ∧ · · · ∧ai ∧ · · · ∧ aj ∧ · · · ∧ ak
= − a1 ∧ · · · ∧ aj ∧ · · · ∧ ai ∧ · · · ∧ ak

since switching ai and aj requires an odd number of interchanges, but

a1 ∧ · · · ∧ai ∧ · · · ∧ aj ∧ · · · ∧ ak
= a1 ∧ · · · ∧ aj ∧ · · · ∧ ai ∧ · · · ∧ ak

since ai = aj .

Our next operation is the dot product of two simple k-vectors:
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Definition 3.

(a1 ∧ · · · ∧ ak) • (bk ∧ · · · ∧ b1) def.
= det

a1 • b1 · · · a1 • bk
...

ak • b1 · · · ak • bk

 .

Notice that on the left-hand side of the defining equation, we have written
bk ∧ · · · ∧ b1 rather than b1 ∧ · · · ∧ bk. We are making use of reversion here.
The reversion of a simple k-vector b = b1 ∧ · · · ∧ bk is

b† = (b1 ∧ · · · ∧ bk)† def.
= bk ∧ · · · ∧ b1.

Thus Definition 3 defines the dot product of

(a1 ∧ · · · ∧ ak) • (b1 ∧ · · · ∧ bk)†.

The reason why this is convenient will be more easily seen once we introduce
the geometric product later on.

Example 1. Recall that e1, e2, e3 are the standard basis vectors of R3; that
is, they are the unit vectors parallel to the χ1-, χ2-, and χ3-axes respectively
oriented in the direction of increasing χi. (You may have seen them before as
i, j,k.) Let

a1 = b1 = e1,

a2 = e2 + e3,

b2 = e2.

Then

(a1 ∧ a2) • (b2 ∧ b1) = det

(
a1 • b1 a1 • b2
a2 • b1 a2 • b2

)
= det

(
1 0
0 1

)
= 1.

Here is a way in which the dot product of simple k-vectors resembles the
dot product of vectors in Rn and in which it has a geometric interpretation:
Suppose a = a1 ∧ · · · ∧ ak and b = b1 ∧ · · · ∧ bk simple k-vectors. It can be
shown that ∣∣a • b

∣∣ ≤ |a| |b| = vol(a1 ∧ · · · ∧ ak) vol(b1 ∧ · · · ∧ bk).
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Because of this, there is a unique θ such that 0 ≤ θ ≤ π and

cos(θ) =
a • b

|a| |b| .

We define this θ to be the angle between the parallelepipeds that corre-
spond to a and b or, more generally, to the vector subspaces of Rn that are
determined by these parallelepipeds. (See Figure 1.7.)

a1

a2

θ

b1

b2

Figure 1.7: Angle between parallelepipeds

Our third operation is the wedge product :

Definition 4. Suppose we are given simple k- and m-vectors, a = a1∧· · ·∧ak
and b = b1 ∧ · · · ∧ bm respectively. By their wedge product a∧ b we mean the
simple (k +m)-vector

a ∧ b = a1 ∧ · · · ∧ ak ∧ b1 ∧ · · · ∧ bm.

Thus, for example,

(e1 ∧ e2) ∧ (e1 ∧ e3) = e1 ∧ e2 ∧ e1 ∧ e3 = 0

because {e1, e2, e1, e3} is a linearly dependent set. On the other hand,

(e1 ∧ e3) ∧ e2 = e1 ∧ e3 ∧ e2 = − e1 ∧ e2 ∧ e3

because a simple k-vector changes sign every time one interchanges two
1-vector factors.



Chapter 2

The Space of k-Vectors

2.1 The vector space ΛkRn

We now permit ourselves to add simple k-vectors and call the results k-
vectors. We write down formal sums; that is we put down expressions such
as 3 (e1 ∧ e2) + 1.5 (e1 ∧ e3) and act as though we know what we are doing.
Simple k-vectors have a geometric interpretation as equivalence classes of
oriented parallelepipeds, but sums of simple k-vectors often lack such an
interpretation. However one can do algebra with them, and this can make
them very useful.

A careful justification for this operation of addition can be found in [5]. It
is shown there that this can be done in such a way that we obtain a vector
space which we designate ΛkRn, the space of k-vectors in Rn. That is, ΛkRn

is vector space in that it satisfies all the axioms of a vector space: If we
assume a, b, c are k-vectors and λ and ξ are scalars, then

1. a+ (b+ c) = (a+ b) + c.

2. λ(a+ b) = λa+ λb.

3. (λξ)a = λ(ξa).

4. a+ 0 = a.

5. a+ b = b+ a.

6. 0 a = 0 and 1 a = a.

11
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7. a+ (−a) = 0.

Recall that −a is (−1)a, and we may take 0 to be the simple k-vector corre-
sponding to a degenerate k-parallelepiped.

In the event that k > n, we take ΛkRn to be the vector space consisting
of a single element, 0. The reason for this is that if we are given a simple
k-vector a1 ∧ · · · ∧ ak where k > n, then {a1, . . . , ak} must be a linearly
dependent set, and thus a1 ∧ · · · ∧ ak = 0.

We take Λ1Rn to just be Rn, and it is convenient to identify Λ0Rn with
the set of real numbers, R.

2.2 Wedge product
We want to consider the special features of ΛkRn.

The most outstanding of these is the existence of the wedge product : In
the expression a1 ∧ · · · ∧ ak, the symbol ∧ is merely a part of our notation for
a simple k-vector. However we do know that it is possible to form a wedge
product of simple k- and m-vectors to form a simple (k +m)-vector:

(a1 ∧ · · · ∧ ak) ∧ (b1 ∧ · · · ∧ bm) = a1 ∧ · · · ∧ ak ∧ b1 ∧ · · · ∧ bm.
We can extend wedge as a binary operation to all k-vectors. Given a, b, c
which are p-, q-, and r-vectors respectively and λ a scalar, we can construct
the wedge product to have the following properties:

1. a ∧ b is a (p+ q)-vector.

2. a ∧ (b ∧ c) = (a ∧ b) ∧ c.

3. λ(a ∧ b) = (λa) ∧ b = a ∧ (λb).

4. Assuming q = r,
a ∧ (b+ c) = a ∧ b+ a ∧ c.

Assuming p = q,
(a+ b) ∧ c = a ∧ c+ b ∧ c.

It turns out to be convenient to treat scalars as 0-vectors and to define the
wedge product of a scalar λ and a k-vector thus:

λ ∧ a = a ∧ λ = λa.
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Example 2. Using the properties listed above and the fact that interchanging
the order of vectors in a simple k-vector changes the sign of the simple k-
vector, we “simplify" a wedge product in R4:

−3e2∧
[
(e1 ∧ e3) + 7(e3 ∧ e4)

]
= − 3(e2 ∧ e1 ∧ e3)− 21(e2 ∧ e3 ∧ e4)
= 3(e1 ∧ e2 ∧ e3)− 21(e2 ∧ e3 ∧ e4).

2.3 Bases for ΛkRn

The wedge product also has the following useful property: If {u1, . . . , un} is
a basis for Rn, then the simple k-vectors of the form ui1 ∧ · · · ∧ uik where
i1 < · · · < ik constitute a basis for ΛkRn.

Example 3. We know that {e1, e2, e3} is a basis for R3, so bases for ΛkR3 are
as indicated:

Λ2R3 : e1 ∧ e2, e1 ∧ e3, e2 ∧ e3.
Λ3R3 : e1 ∧ e2 ∧ e3.

Notice that from the basis for Λ3R3, we see that dim(Λ3R3) = 1 and that if
a is any 3-vector in R3, it must have the form a = λ(e1 ∧ e2 ∧ e3) for some
scalar λ.

Example 4. A basis for Λ2R4 is

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4.

Thus dim(Λ2R4) = 6.

This last example is a particular case of the following:

Proposition 2. For k = 0, 1, . . . , n, the dimension of ΛkRn is the binomial
coefficient

(
n
k

)
.

This is because, starting with a basis {ui}ni=1 and forming basis k-vectors
ui1 ∧ · · · ∧ uik where i1 < · · · < ik, we see that we are concerned to count the
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number of sequences of length k, (i1, . . . , ik), that we can form by choosing
from the set of n objects {1, . . . , n}.

This is perhaps a good place to introduce the idea of multi-indices. A
multi-index is the same thing as an index except that it may have several
entries. By a multi-index I of length k, we mean a sequence I = (i1, . . . , ik)
where each ir comes from some set of indices. Sometimes we drop the paren-
theses and write I = i1 . . . ik. Thus, for example, if we consider a matrix with
entries αij , we can say that ij is a multi-index of length 2.

We will say that a multi-index I = (i1, . . . , ik) is ordered if i1 < · · · < ik.
Let {ui}ni=1 be a basis for Rn and let us form a multi-index I = (i1, . . . , ik).
then we set

uI
def.
= ui1 ∧ · · · ∧ uik .

By our remarks about bases for ΛkRn, we see that every k-vector a has a
unique expansion

a =
∑
I

λIuI

where the summation is over all the multi-indices of length k that are ordered
and the each λI is a scalar.

2.4 Reversion and dot product
We can also apply the operation of reversion and take dot products of k-
vectors.

Recall that the reversion of a simple k-vector is

(a1 ∧ · · · ∧ ak)† = ak ∧ · · · ∧ a1,

that is, we just reverse the order of the factors. We also know that ai ∧ aj =
−aj ∧ ai. If we permute the factors of a1 ∧ · · · ∧ ak one at a time to obtain the
reversion ak ∧ · · · ∧ a1, then we find that

(a1 ∧ · · · ∧ ak)† = (−1)ra1 ∧ · · · ∧ ak where r =
k(k − 1)

2
.

We can define reversion for an arbitrary k-vector by extending the definition
on simple k-vectors linearly. That is, we know that any k-vector a can be
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expanded into a linear combination of simple k-vectors, a =
∑

I λIaI where
each aI is simple. Then

a† =
∑
I

λIa
†
I .

An equivalent description is

a† = (−1)r
∑
I

λIaI where r =
k(k − 1)

2
.

In same way, we extend the definition of dot product linearly from simple
k-vectors to arbitrary k-vectors.

That is, we know that for simple k-vectors, we have

(a1 ∧ · · · ∧ ak) • (b1 ∧ · · · ∧ bk)† = det

a1 • b1 · · · a1 • bk
...

ak • bk · · · ak • bk

 .

If we have arbitrary k-vectors a =
∑

I λIaI and b =
∑

J ξJbJ where λI , ξJ are
scalars and aI , bJ are simple k-vectors, then we take the dot product of a and
b to be

a • b† =
(∑

I

λIaI

)
•

(∑
J

ξJb
†
J

)
=
∑
I

∑
J

λIξJ(aI • b†J).

We now discover a nice game we can play with dot products if we have
an orthonormal basis.

Let {ui}ni=1 be an orthonormal basis for Rn. We form the corresponding
basis k-vectors uI for ΛkRn where I ranges over all ordered multi-indices of
length k. We find that if i1 < · · · < ik and j1 < · · · < jk, then(

ui1 ∧ · · · ∧ uik
)

•

(
uj1 ∧ · · · ∧ ujk

)†
=

{
1 if (i1, . . . , ik) = (j1, . . . , jk),

0 if (i1, . . . , ik) 6= (j1, . . . , jk).
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That is, {uI}I , for suitable I , acts as an “orthonormal” basis for ΛkRn. (The
reader is invited to check this calculation for k = 2.) To put it slightly
differently, if we use ordered multi-indices of length k, we have

uI •uJ =

{
1 if I = J,

0 if I 6= J.

The following result is then a trivial calculation:

Proposition 3. Suppose {ui}ni=1 is an orthonormal basis for Rn. Let a, b ∈
ΛkRn and let us expand them thus:

a =
∑
I

λIuI , b =
∑
J

ξJuJ

where λI , ξJ are scalars and the sums are over all ordered multi-indices I, J
of length k. Then

1. a • a† =
∑

I λ
2
I .

2. a • b† =
∑

I λIξI .

This proposition says that ΛkRn is isomorphic to Rm (where m =
(
n
k

)
)

not only in terms of vector space properties but also with respect to the dot
product. We take advantage of this “isomorphism” to define the magnitude of
a k-vector a by the equation

|a| def.
=
√
a • a†.

We also find that the Cauchy-Schwarz inequality holds for k-vectors:

|a • b| ≤ |a| |b|.

Provided a, b 6= 0, we can use this to define an “angle” θ between a and b by

cos(θ)
def.
=

a • b

|a| |b|

where 0 ≤ θ ≤ π. (We mentioned this previously for simple k-vectors.)



Chapter 3

Calculus With k-Vectors

We want to show some things one can do with k-vectors and calculus. How-
ever we start with a simple but useful application in analytic geometry.

3.1 Hyperplanes
A line L in the plane or 3-dimensional space or more generally Rn is de-
termined by two points. Let us call the points a0 and a1; we can also think
of them as being vectors in Rn. (Figure 3.1.) Notice that a point x is on L

a0

a1

L

Origin

x

Figure 3.1: A line determined by two points

precisely when the vectors a1− a0 and x− a0 are linearly dependent, that is,
when

(x− a0) ∧ (a1 − a0) = 0.

17
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In other words, this last equation can be considered an equation for the line.
(It is a nonparametric equation; no parameters have been introduced to help
us describe L.) Another way to specify L is give a point that it passes through
(for example, a0) and a vector parallel to the line (for example, b = a1 − a0.)
Then the equation for L becomes

(x− a0) ∧ b = 0. (3.1)

Example 5. Let L be the line in R3 passing through a0 = (1, 1, 2) = e1 + e2 +
2e3 in the direction given by the vector b = 3e1 − e3. The arbitrary point x
on L is represented as x = (χ1, χ2, χ3) = χ1e1 + χ2e2 + χ3e3. Then Equation
(3.1) becomes[

(χ1 − 1)e1 + (χ2 − 1)e2 + (χ3 − 2)e3
]
∧ (3e1 − e3) = 0.

Multiplying out, this reduces to

−3(χ2 − 1) e1 ∧ e2 + (−χ1 − 3χ2 + 7) e1 ∧ e3
+(−χ2 + 1) e2 ∧ e3 = 0.

Since e1 ∧ e2, e1 ∧ e3, and e2 ∧ e3 constitute a basis for Λ2R3, the coefficients
of the last equation must be zero, and Equation (3.1) ultimately reduces to
the two scalar equations

χ1 + 3χ3 = 7,

χ2 = 1

which specify L.

Equation (3.1) can be generalized to describe any k-dimensional hyper-
plane in Rn.

To say that H is a k-dimensional hyperplane means that it must be a
translate of a k-dimensional vector subspace of Rn. To be more specific, let
V be a k-dimensional vector subspace of Rn. Next choose a point a0 in Rn.
If we want a hyperplane passing through a0, we can translate V to a0. We
do this by replacing every point x of V by x + a0 and calling the resultant
set a0 + V ; this is our hyperplane H .

Now since V is a vector subspace and k-dimensional, we can find a basis
a1, . . . , ak for V . These vectors will still be “parallel” to a0 + V . Then an
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arbitrary point x in Rn will belong to our hyperplane if and only if the vector
x− a0 is a linear combination of a1, . . . , ak; that is, if and only if the vectors
x − a0, a1, . . . , ak are linearly dependent. This condition is captured by the
equation

(x− a0) ∧ (a1 ∧ · · · ∧ ak) = 0. (3.2)

3.2 Differentiability
We want to move beyond hyperplanes to more general surfaces. It is desirable
to first indicate what we mean by differentiability.

If φ is a real-valued function with domain in Rn, we say that φ is C1 at
x0 = (χ01, . . . , χ0n) in the domain of φ provided each of the partial derivatives
∂φ/∂χi exists and is continuous in some open neighborhood of x0. We say
that φ is Ck at x0 provided each of the mixed partials

∂kφ

∂χi1 · · · ∂χik
exists and is continuous in some open neighborhood of x0.

One of the most useful results of being Ck is that the order in which the
differentiations are performed is irrelevant. Thus if φ is a function of χ and ξ
and is C2, we have

∂2φ

∂χ ∂ξ
=

∂2φ

∂ξ ∂χ
.

We generalize the previous discussion in two ways: Suppose first of all
that f is a vector-valued function with domain in Rn. We mean here that
f takes on values in Rn or some other Rm; this generalizes the idea of a
real-valued function. Second, instead of considering partial derivatives of f ,
we consider directional derivatives. We say that the directional derivative of
f at x0 in the direction specified by the vector v is

∂vf(x0)
def.
= lim

λ→0

1

λ

[
f(x0 + λv)− f(x0)

]
(3.3)

where it is understood that λ is a scalar. If f is a function of the real
variables χ1, . . . , χn, that is, we have f(χ1, . . . , χn), then we get back to
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partial derivatives via the notation

∂f

∂χi

def.
= ∂eif.

If f : U → Rn where U is an open subset of some Rm, we say that f is
differentiable at x0 ∈ U if there is a linear transformation f ′(x0) : Rm → Rn

and a function g : V → Rn where V is a neighborhood of 0 in Rm such that

f(x0 + v)− f(x0) =
[
f ′(x0)

]
v + g(v) for v ∈ V

and
lim
v→0

g(v)

|v| = 0.

f is differentiable on U if it is differentiable at every x ∈ U . We call the map
v 7→

[
f ′(x0)

]
v the differential of f .

When we look at this definition, we see that

1

λ

[
f(x0 + λv)− f(x0)

]
=
[
f ′(x0)

]
v +

g(λv)

λ
.

Thus if we let λ→ 0, we have[
f ′(x0)

]
v = lim

λ→0

1

λ

[
f(x0 + λv)− f(x0)

]
= ∂vf(x0).

Here is a standard result from analysis:

Proposition 4. If f is C1 on the open set U , then it is differentiable at every
point of U .

3.3 Surfaces and tangent vectors
By a surface, we mean something like a surface of the type one encounters
in introductory calculus or analytic geometry or, a little more generally a
“manifold-with-corners." A hyperplane is an example of what we have in mind.
We shall not give a precise definition of “surface” but shall say enough about
the idea we have in mind that we can work with it.
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The important thing about p-dimensional surfaces is that one can cover
them with what we will call coordinate patches or local parametrizations, and
these parametrizations are assumed to have certain nice properties.

If x0 is a point in M, we want to be able to find an open subset U of Rp

and a map x : U →M such that

1. x0 ∈ x(U).

2. x is one-to-one.

We say that x or x(U) (we are not very careful about the distinction) is a
coordinate patch containing x0. We also say that x is a local parametrization
of M. Suppose the coordinates of a point t ∈ Rp are (τ1, . . . , τp). If, under
our coordinate patch x, we have x0 = x(t0) and t0 = (τ01, . . . , τ0p), then we
say that x0 has the coordinates (τ01, . . . , τ0p) with respect to this coordinate
patch or parametrization.

If we want to say that M is Cr surface (where r ≥ 1), we require that for
each coordinate patch x, the maps x and x−1 be Cr.

Now a little notation. Since we are letting (τ1, . . . , τp) be the coordinates
of t ∈ dom(x) ⊆ Rp, let us introduce the notation

∂x

∂τi

def.
= ∂eix.

(We are, of course, assuming that x is at least C1.) The way we have done
this, ∂x/∂τi should be a function of t0 ∈ Rp, but sometimes we shall abuse
notation and write it as a function of x0 ∈ M. Since x is a one-to-one map,
we should not get into trouble.

Now here is an important point: Each ∂x/∂τi, when evaluated at x0 (or
t0), is a tangent vector to M at the point x0.

We may define a tangent vector to M thus:

tangent vector to M at x0

= λ1

( ∂x
∂τ1

(x0)
)

+ · · ·λp
( ∂x
∂τp

(x0)
) (3.4)

where λ1, . . . , λp are scalars. That is, it is a linear combination of the tangent
vectors ∂x/∂τi when evaluated at x0. (Of course, this definition does not
depend on which parametrization x we use.) By Tx0M we shall mean the
space of all tangent vectors to M at x0.
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A second and sometimes useful way to construct a tangent vector to M

at x0 is this: Let f : U → M be a map where U is a subset of R; in other
words, f defines a curve in M. We assume f passes through x0; without loss
of generality, we suppose that f(0) = x0. Assuming further that f is at least
a C1 function, if

v = lim
λ→0

1

λ

[
f(λ)− f(0)

]
= f ′(0),

then v is a tangent vector to M at x0. This method of constructing tangent
vectors to a surface is equivalent to the characterization of (3.4).

There is one other property we shall require of coordinate patches, some-
thing we call nonsingularity: At every x0 in the coordinate patch x, if x0 =
x(t0), then we require that the vectors ∂e1x(t0), . . . , ∂epx(t0) be linearly in-
dependent. Then the requirement that the parametrization x be nonsingular
amounts to

∂x

∂τ1
(x0) ∧ · · · ∧

∂x

∂τp
(x0) 6= 0.

If M were a one-dimensional curve and x was the path of a particle tracing
the curve, then this condition would amount to saying that the particle never
stops moving. More generally, we are requiring that at every point of M,
we have a tangent p-parallelepiped (∂x/∂τ1) ∧ · · · ∧ (∂x/∂τp) with positive
p-volume. Another way to think of this is that the parametrization x maps
“small” regions of positive p-volume in Rp to “small” tangent sets also of
positive p-volume.

A particularly useful surface is the cell. This is because other surfaces
can be thought of as being composed of cells that are joined together “nicely.”

In what follows, by I we mean the unit interval [0, 1]. By the k-dimensional
unit cube Ik we mean I× · · · × I with k factors.

Definition 5. We say that M is a Cr p-cell (contained in some Rn) provided
there exists a Cr coordinatization (or parametrization) x : Ip →M such that

1. x : Ip →M is one-to-one and onto.

2. x and x−1 are Cr.

3. ∂x
∂τ1
∧ · · · ∧ ∂x

∂τp
6= 0 everywhere on M.

See Figure 3.2 for a picture of what cells look like.
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Figure 3.2: 2-cell and 3-cell

3.4 Tangent blades and orientation
Recall that we can specify an orientation for an arc A by attaching a unit
tangent vector to every point of A in a continuous fashion. (Figure 3.3.)

A

Figure 3.3: Oriented arc

How do we generalize orientation to a surface?

If we have coordinatization x : U → M of a p-surface M (where U is an
open subset of Rp) and this induces coordinates (χ1, . . . , χp) on M, then since
each ∂x/∂χi is a tangent vector to M, we can consider

∂x

∂χ1

∧ · · · ∧ ∂x

∂χp

to be a tangent p-vector to M. We may visualize it as a parallelepiped that is
tangent to M at the point x0 ∈M at which each of the partials is evaluated.

A simple k-vector a1 ∧ · · · ∧ ak is called a blade provided it is not 0. Our
requirement of a parametrization x that

∂x

∂χ1

∧ · · · ∧ ∂x

∂χp
6= 0
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then amounts to the claim that this tangent parallelepiped is a p-blade.
By an orientation of the p-surface M, we mean a continuous function w

that assigns to every point x of M a unit tangent blade w(x). That is, w(x)
must have the form a1 ∧ · · · ∧ ap where each ai is a tangent vector to M at x
and |w(x)| = 1.

Example 6. By the standard orientation of Rn we mean the constant n-blade
e1 · · · en = e1 ∧ · · · ∧ en.

Every C1 surface M has local orientations around every point x0 ∈ M.
That is, a unit tangent blade w(x) can be assigned continuously to some
neighborhood of x0 in M. If the orientation can be extended to all of M, the
surface is orientable; otherwise, as in the case of a Möbius strip, the surface
is nonorientable.

A connected, orientable surface M has precisely two orientations. If one
of them is w, the other is −w.

If w is an orientation of the p-surface M and x is a parametrization of M,
we say that x agrees with the orientation of M provided

w =

∂x
∂χ1
∧ · · · ∧ ∂x

∂χp∣∣∣ ∂x∂χ1
∧ · · · ∧ ∂x

∂χp

∣∣∣ .
3.5 Integrals
We start with the change-of-variables formula for integrals:

Suppose U and V are open subsets of Rn and x : U → V is a one-to-one
onto map such that both x and x−1 are C1. If φ : V → R and φ is integrable
over V , then (φ ◦ x) | det x ′| is integrable over U and∫

U

(φ ◦ x) | det x ′| =
∫
V

φ. (3.5)

(See [4] or [10] for a proof.) The expression | det x ′| is a kind of “local mag-
nification factor” for the way the map x changes n-dimensional volume at
any given point. The expression det x ′ may be familiar to the reader as the
Jacobian determinant.

Using the wedge product, this formula can be generalized to define what
we mean by an integral over a k-dimensional surface M in Rn.
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Suppose that x : U → M is a parametrization of M and it assigns co-
ordinates (τ1, . . . , τk) to points of M. Recall this means that a point p ∈ M

has coordinates (τ1, . . . , τk) with respect to the parametrization (or coordinate
patch) x if p = x(τ1, . . . , τk). We intend U to be a “nice” subset of Rk, for
example, a k-cell, rectangle, simplex, open set, etc. We set∫

M

φ
def.
=

∫
U

(φ ◦ x)
∣∣∣ ∂x
∂τ1
∧ · · · ∧ ∂x

∂τk

∣∣∣. (3.6)

The integral on the right is that of a real-valued function over a “nice” subset
of Rk, so we expect it to be integrable using standard techniques of calculus.

We know that
∂x

∂τ1
∧ · · · ∧ ∂x

∂τk

can be envisioned as an oriented k-dimensional parallelepiped that is tangent
to M, and ∣∣∣ ∂x

∂τ1
∧ · · · ∧ ∂x

∂τk

∣∣∣
is the k-volume of that parallelepiped. In the case where k = n, then∣∣∣ ∂x

∂τ1
∧ · · · ∧ ∂x

∂τk

∣∣∣ = | det(x ′)|,

and we are back to the change-of-variables formula.

Example 7. Let S1 be the unit circle in R2. We will take M to be S1×S1. This
is a torus in R4 and satisfies the two equations χ2

1 +χ2
2 = 1 and χ2

3 +χ2
4 = 1.

We know the length of S1 is 2π. Since M is a cartesian product with the two
copies of S1 lying in orthogonal spaces, it seems reasonable to guess that
the area of M (the 2-dimensional volume) should be a product of lengths,
(2π)2 = 4π2. At the same time, one would expect the 2-volume of M to be
given by

∫
M

1. Do the two intuitions agree? Let us figure out how to evaluate
the integral.

We know that we can parametrize S1 thus:

θ 7→ cos(θ) e1 + sin(θ) e2.

So we take

x(ψ, ξ) = cos(ψ) e1 + sin(ψ) e2 + cos(ξ) e3 + sin(ξ) e4,
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where (ψ, ξ) ∈ [0, 2π]× [0, 2π], as our parametrization of M.
(There is a slight technical difficulty here since this parametrization is not

one-to-one on the edges of the square. However the problem occurs on a
“small set,” one that is of “measure zero,” and it can be shown that this does
not influence the answer.)

We see that
∂x

∂ψ
= − sin(ψ) e1 + cos(ψ) e2,

∂x

∂ξ
= − sin(ξ) e3 + cos(ξ) e4,

and we readily calculate that ∣∣∣ ∂x
∂ψ
∧ ∂x
∂ξ

∣∣∣ = 1.

We finally evaluate the integral:∫
M

1 =

∫
[0,2π]2

∣∣∣ ∂x
∂ψ
∧ ∂x
∂ξ

∣∣∣
=

∫ 2π

0

∫ 2π

0

1 dψ dξ = 4π2.

We can replace φ in the integral of (3.6) by a p-vector field f . We need
only start with the standard basis {ei}ni=1 for Rn and write f in terms of it:

f =
∑
|I|=p

φIeI

where it is understood that I ranges over all multi-indices which are both
ordered and of length p and each φI is a real-valued function. f always has
such a decomposition, and it is unique. We then set∫

M

f
def.
=
∑
|I|=p

(∫
M

φI

)
eI . (3.7)

Of course {ei}ni=1 can be replaced by any basis {ui}ni=1 for Rn provided the
basis elements are constant vectors. We call (3.6) and (3.7) unoriented inte-
grals.
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We know that in elementary, single-variable calculus, we deal with ori-
ented integrals. We can see this from the fact that given a real-valued function
of a single variable, φ(τ), we have∫ β

α

φ(τ) dτ = −
∫ α

β

φ(τ) dτ.

That is, orientation is taken account of by noting the direction in which we
integrate.

We shall see later how to generalize the notion of oriented integral to
surfaces. It is convenient to first develop the ideas of the geomtric product
and geometric algebra.



Chapter 4

Geometric Algebra

4.1 Gn and grades
We now construct the geometric algebra over Rn and denote it Gn. This is a
vector space that contains and is generated by R, Rn, Λ2Rn, . . . , ΛnRn. In Gn

it is perfectly legal to add k-vectors which have different values of k. Thus
we get to write expressions such as

√
2− 7 e1 ∧ e3. It follows that in G3, for

example, every element will be of the form α + a + b + c where α is a real
number, a is a vector, b is a 2-vector, and c is a 3-vector. We call the elements
of Gn multivectors.

We can write Gn as a direct sum of the different spaces of k-vectors in
Rn:

Gn = R⊕ Rn ⊕ Λ2Rn ⊕ · · · ⊕ ΛnRn.

Of course, we feel free to write R = Λ0Rn and Rn = Λ1Rn. If a multivector is
a sum of k-vectors, then we say it is of grade k. Thus 4 e1 ∧ e2−π e2 ∧ e3 is a
grade 2 multivector. On the other hand,

√
2− 7 e1 ∧ e3 cannot be assigned a

unique grade because it is the sum of a grade 0 and a grade 2 term. If a is a
multivector, we use the symbol

〈
a
〉
k

for the sum of the grade k terms that occur
in it. Thus for every multivector a in Gn we have a unique decomposition:

a =
〈
a
〉
0

+
〈
a
〉
1

+ · · ·
〈
a
〉
n
.

If we take a =
√

2− 7 e1 ∧ e3, an element of G3, then for this multivector,〈
a
〉
0

=
√

2,〈
a
〉
1

= 0,

28
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a
〉
2

= −7 e1 ∧ e3,〈
a
〉
3

= 0.

4.2 The geometric product
In spaces of k-vectors, we are familiar with the operations of multiplication by
scalars, addition, the dot product, and the wedge product. These operations
can be extended into Gn. And we add one more operation, the geometric
product, which can be thought of as a generalization of both the dot and the
wedge products.

We write the geometric product of multivectors a and b as ab. This is
not, in general, commutative. Careful constructions of it are given in [7] and
[12]. Here we follow an exposition reminiscent of [6] and simply describe the
properties of the geometric product.

Properties of the geometric product

1. If a, b, c ∈ Gn and λ ∈ R, then

(a) 1 a = a 1 = a.
(b) a (b+ c) = ab+ ac and (a+ b) c = ac+ bc.
(c) λ (ab) = (λa) b = a (λb).
(d) a(bc) = (ab)c.

2. If a, b ∈ Rn, then
ab = a • b+ a ∧ b.

3. If u1, . . . , up are orthogonal vectors, then

u1 · · ·up = u1 ∧ · · · ∧ up.

Notice that it is properties 2 and 3 that exhibit the connection between
the geometric, dot, and wedge products.

An immediate consequence of property 2 is that if a is a vector of Rn, then
aa = |a|2. This is because a • a = |a|2 and a ∧ a = 0.
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If we wish to calculate a geometric product, it is often helpful to express our
multivectors in terms of an orthonormal basis for Rn. Suppose, for example,
that u1, u2, u3 are orthonormal vectors. Then

u1(u1u2) = u2 (because |u1|2 = 1),
u2(u1u3) = u2 ∧ u1 ∧ u3 = −u1 ∧ u2 ∧ u3 = −u1u2u3.

We can show the following:

Proposition 5. If {ui}ni=1 is a basis for Rn, then the set consisting of 1 and the
blades ui1 ∧ · · · ∧ uik such that i1 < · · · < ik and k = 0, 1, . . . , n constitutes a
basis for Gn.

Thus a basis for G3 is

1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3.

Keep in mind when we say this, that a basis element such as e1e2 is the same
thing as e1 ∧ e2 because e1 and e2 are orthogonal. So we can also say that
a basis for G3 is

1, e1, e2, e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3, e1 ∧ e2 ∧ e3.

Corollary 1. The dimension of Gn is 2n.

This is seen from the fact that the dimension of ΛkRn is
(
n
k

)
and(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
= 2n.

4.3 Extending reversion
One of our concerns is to extend operations defined for k-vectors to arbitrary
multivectors. (Remember, not all multivectors are k-vectors. An example is√

2− 7 e1e3. We want our extended operations to work in this larger space.)
The first of these is reversion:

If u1, . . . , uk are orthogonal vectors, then we see that

(u1 · · ·uk)† = (u1 ∧ · · · ∧ uk)†
= uk ∧ · · · ∧ u1
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= (−1)
k(k−1)

2 u1 ∧ · · · ∧ uk
= (−1)

k(k−1)
2 u1 · · ·uk.

We can do this because we know how to take the reversion of a k-vector. We
know that a multivector in Rn has a unique expansion into k-vectors thus:

a =
〈
a
〉
0

+
〈
a
〉
1

+ · · ·+
〈
a
〉
n
.

We define the reversion of a multivector in this way:

a†
def.
=

n∑
k=0

(−1)
k(k−1)

2

〈
a
〉
k
.

One can, of course, show that reversion is linear (that is, (λa)† = λa† and
(a+ b)† = a† + b†) and that (ab)† = b†a†.

4.4 The scalar product
The second operation we extend from k-vectors to multivectors is the dot
product. There is definitely more than one useful way to do this; four of them
are considered in [12]. We exhibit only one, the scalar product.

Definition 6. If a and b are multivectors in Rn, that is, a, b ∈ Gn, then their
scalar product is

〈
ab†
〉
0
.

This product is commutative, and it does not matter which factor gets the
dagger: 〈

ab†
〉
0

=
〈
a†b
〉
0

=
〈
ba†
〉
0

=
〈
b†a
〉
0
.

It is easily seen that the scalar product generalizes the dot product of
vectors: Suppose that a, b ∈ Rn; that is, a and b are grade 1. Note that
b† = b trivially. We know that ab = a • b+ a ∧ b. We see that a • b is grade 0
while a ∧ b is grade 2. Thus〈

ab†
〉
0

=
〈
ab
〉
0

=
〈
a • b+ a ∧ b

〉
0

= a • b.

It can also be shown that if a and b are simple k-vectors, a = a1 ∧ · · · ∧ ak
and b = b1 ∧ · · · ∧ bk, then〈

ab†
〉
0

= det(ai • bj)k×k,
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the determinant of a k × k matrix, so that the scalar product generalizes the
dot product of k-vectors.

The scalar product looks particularly nice if one writes everything in terms
of an orthonormal basis:

Let {ui}ni=1 be an orthonormal basis for Rn. We know that {uI}I , where
I runs through all ordered multi-indices, is a basis for Gn. We see that

〈
uIu

†
J

〉
0

=

{
1 if I = J,

0 if I 6= J.

This follows from the fact that if uI is a p-vector and uJ is a q-vector with
p 6= q, then the product uIu†J cannot be grade 0. While if p = q, then the
scalar product reduces to the dot product of p-vectors. In any event, we can
treat {uI}I as an “orthonormal” basis for Gn.

Next let a and b be multivectors in Rn and write their unique expansions
in terms of {uI}I :

a =
∑
I

αIuI and b =
∑
I

βIuI .

Then we have 〈
aa†
〉
0

=
∑
I

α2
I ,〈

ab†
〉
0

=
∑
I

αIβJ .

We define the magnitude of the multivector a thus:

|a| def.
=
√〈

aa†
〉
0
.

Notice that we are simply echoing things we said earlier about k-vectors in
Section 2.4 and Proposition 3 but now on the broader stage of Gn.

4.5 The wedge product of multivectors
The easiest operation to extend to multivectors is the wedge product. The
quick-and-dirty way to do it is to assume that this extended operation has
the following, obviously desirable properties:

If a, b, c are multivectors in Rn and λ is scalar, then the following hold:
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1. a ∧ (b+ c) = (a ∧ b) + (a ∧ c).

2. (a+ b) ∧ c = (a ∧ c) + (b ∧ c).

3. λ(a ∧ b) = (λa) ∧ b = a ∧ (λb).

4. λ ∧ a = a ∧ λ = λa.

5. (a ∧ b)† = b† ∧ a†.
This permits us to reduce all wedge products of multivectors to wedge products
of simple p- and q-vectors which we already (presumably) know how to do.
Thus, for example,

(2 + 3 e1e4) ∧ (1− e1 + e2) = 2− 2e1 + 2e2

+ 3 e1e4 − 3 (e1e4) ∧ e1 + 3 (e1e4) ∧ e2
= 2− 2e1 + 2e2 + 3 e1e4 − 3e1e2e4.

(Notice in this calculation that

(e1e4) ∧ e1 = e1 ∧ e4 ∧ e1 = 0,

(e1e4) ∧ e2 = e1 ∧ e4 ∧ e2 = −e1 ∧ e2 ∧ e4
because the vectors are orthogonal.)

Of course, to simply assume the properties we want is cheating. It can
easily lead to disaster (as in, “Let us assume the following circle has three
corners . . . ”). To do this properly, we ought to provide a mathematical proof
that the extension can be carried out. We do not do this here, but one way
to do it is to use the following odd-looking definition of the extended wedge
product:

a ∧ b def.
=

n∑
p,q=0

〈〈
a
〉
p

〈
b
〉
q

〉
p+q

.

(Details provided in [12].)

4.6 Division by multivectors
A very useful property of geometric algebra is that one can always divide by
blades; in particular, one can divide by nonzero vectors. This something one
cannot do in vector analysis.
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Suppose that a is a k-blade in Rn. We know that a 6= 0 so |a| > 0. Notice
that since aa† = a†a = |a|2, we have

a
a†

|a|2 =
a†

|a|2 a = 1.

This amounts to saying that

a−1 =
a†

|a|2 .

A case worthy of note is when we have a unit blade, as, for example, an
orientation w of a surface. Then

w−1 = w† because |w| = 1.

Though blades always have inverses (with respect to the geometric prod-
uct), there are nonzero multivectors that do not. Division is only possible
some of the time.

Division often has an important geometric interpretation. To see this, let
a be a k-blade in Rn and let e = e1 · · · en where {ei}ni=1 is the standard basis.
We know that e is the standard orientation of Rn. It is always possible to find
an orthonormal basis {ui}ni=1 of Rn such that a = λu1 · · ·uk where λ = |a|.
We know that u = u1 · · ·un must also be an orientation for Rn, and since a
connected, n-dimensional surface (of which Rn is an example) can have only
two orientations, either u = e or u = −e. Let us assume, for the same of
simplicity, that u = e. Then

ea−1 =
1

λ
(u1 · · ·un)(u1 · · ·uk)†

=
(−1)r

λ
(uk · · ·u1)(u1 · · ·un)

=
(−1)r

λ
(uk+1 · · ·un)

for some integer r. Now (−1)r(1/λ)(uk+1 · · ·un) is clearly orthogonal to
a = λ(u1 · · ·uk). So what we have shown is that if you divide the orientation
of Rn by a k-blade a, the result must be an (n− k)-blade that is orthogonal
to a.
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4.7 Reciprocal vectors
Given a set of linearly independent vectors {ai}ki=1, a very useful trick we
can play with the geometric algebra is to construct the reciprocal set {bi}ki=1.
(We shall demonstrate the usefulness in the next chapter.) The set {bi}ki=1 is
unique and is defined by the properties

{ai}ki=1 and {bi}ki=1 span the same subspace, and

ai • bj =

{
1 if i = j,

0 if i 6= j.

Here is a formula for computing bj from {ai}ki=1: Set a = a1 ∧ · · · ∧ ak. Then

bj = (−1)i−1(a1 ∧ · · · ∧ âi ∧ · · · ∧ ak)a−1

= (−1)k−ia−1(a1 ∧ · · · ∧ âi ∧ · · · ∧ ak),

where âi means that ai is omitted in this product. Notice that in this formula,
we are taking the geometric product of a−1 and a1 ∧ · · · ∧ âi ∧ · · · ∧ ak.

Example 8. Let V be the subspace χ2 = χ3 of R3. A basis is a1 = e1 and
a2 = e2 + e3. We readily compute that

a = a1 ∧ a2 = e1e2 + e1e3,

a−1 = −1

2
(e1e2 + e1e3),

b1 = a2a
−1 = e1,

b2 = −a1a−1 =
1

2
(e2 + e3).

If {ai}ki=1 is a basis for a subspace V , we naturally call {bi}ki=1 the recip-
rocal basis. An independent set of vectors {ai}ki=1 is often called a frame. In
that case, {bi}ki=1 is called the reciprocal frame.



Chapter 5

Derivatives and the Fundamental
Theorem

5.1 Directional derivatives
We assume that M is p-dimensional C1 surface in Rm.

Suppose that f is a multivector field on M; that is, f : M → Gm. We
extend our definition of directional derivative to f :

∂uf(x0)
def.
= lim

λ→0

1

λ

(
f(x0 + λu)− f(x0)

)
where x0 is a point in M, u is a vector in Rm, and, of course, λ is a scalar.
Provided f is “nice,” for example, if it is C1, then given x0, there is a linear
transformation f ′(x0) : Rm → Gm such that

∂uf(x0) =
[
f ′(x0)

]
(u).

The map u 7→
[
f ′(x0)

]
(u) as the differential of f at x0. If we have two maps

f and g and can form their composite, then we have the formula

∂u
(
f ◦ g

)
(x0) =

[(
f ◦ g

) ′
(x0)

]
(u) =

[
f ′
(
g(x0)

)] [
g ′(x0)

]
(u) (5.1)

which is, in effect, the chain rule of multivariable calculus. This is often helpful
for establishing theoretical results.

Continuing with our multivector field f on M, suppose we also have a
parametrization x : U → M which induces coordinates (χ1, . . . , χp) on M.

36
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Then at the point x0 ∈M we define

∂f

∂χi
(x0)

def.
= ∂ei

(
f ◦ x

)
(r0) =

[(
f ◦ x

) ′
(r0)

]
(ei)

where U is a suitable subset of Rp and r0 is the unique point in Rp such that
x(r0) = x0. Notice that we are treating ∂f/∂χi as a function defined on the
surface M; this works because x is a one-to-one function.

Example 9. Let us take M to be the paraboloid χ3 = χ2
1 + χ2

2 in R3. (Figure
5.1.) We give a parametrization x that maps the χ1χ2-plane straight up onto

χ3

χ2χ1

M

Figure 5.1: Paraboloid

the paraboloid:
x(χ1, χ2) = (χ1, χ2, χ

2
1 + χ2

2).

Let us make up a multivector field f that is defined on M (and indeed on all
of R3):

f(χ1, χ2, χ3) = cos(χ1) + sin(χ2) e3 + χ3 e1e2.

Then (
f ◦ x

)
(χ1, χ2) = cos(χ1) + sin(χ2) e3 + (χ2

1 + χ2
2) e1e2,

so
∂f

∂χ1

= − sin(χ1) + 2χ1 e1e2,

∂f

∂χ2

= cos(χ2) e3 + 2χ2 e1e2.

Example 10. Suppose a parametrization x assigns coordinates (χ1, . . . , χp) to
a surface M. It is also often convenient to regard χi not as the ith coordinate
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of a point but as a map χi : M → R that assigns to a point on M its ith
coordinate. That is, if x0 is a point on M and x(χ01, . . . , χ0p) = x0, then
χi(x0) = χ0i. This means that χi ◦ x = πi, the projection Rp → R that selects
the ith entry of of a p-tuple. It then becomes easy to show that

∂χi
∂χj

=

{
1 if i = j,

0 if i 6= j.

It should not be surprising that the following version of the chain rule can
be established:
Proposition 6. Let M be a C1 surface with two sets of coordinates, (χ1, . . . , χp)
and (ξ1, . . . , ξp). If f is C1 multivector field on M, then

∂f

∂χi
=

p∑
j=1

∂f

∂ξj

∂ξj
∂χi

.

5.2 The geometric derivative
Let M be a C1 p-surface in Rm. If x0 is a point in M and x is a parametrization
that induces coordinates (χ1, . . . , χp) on M, then we know from Chapter 3 that
{
(
∂x/∂χi

)
(x0)}pi=1 is a basis for the tangent space Tx0M. We know there must

be a reciprocal basis; let us designate it {dχi(x0)}pi=1. Thus

∂x

∂χi
• dχj =

{
1 if i = j,

0 if i 6= j

at all points at which the two vector fields can be evaluated.
We now come to the basic operation of geometric calculus.

Definition 7. If f is a multivector field on M, then
→
∇Mf

def.
=

p∑
i=1

∂f

∂χi
dχi,

←
∇Mf

def.
=

p∑
i=1

dχi
∂f

∂χi
.

We call these the right-hand and left-hand geometric derivative respectively
depending on the direction of the arrow.
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(In the literature, one usually considers only
←
∇Mf , and it is called the

vector derivative; but we prefer the term geometric derivative.)
It is important to note two things about this definition. First, the product

of the multivector field ∂f/∂χi and the vector dχi is the geometric product.
In general,

∂f

∂χi
dχi 6= dχi

∂f

∂χi
,

so the right-hand and left-hand geometric derivatives need not be equal. This
is not a real difficulty since one can show that(→

∇Mf
)†

=
←
∇M(f †).

The second important point is that the geometric derivative is independent of
the choice of coordinates. Thus if (ξ1, . . . , ξp) is a second set of coordinates
on M, we have

p∑
i=1

∂f

∂χi
dχi =

p∑
j=1

∂f

∂ξj
dξj.

Example 11. Take M to be Rm and let the parametrization x be the identity
map, x(χ1, . . . , χp) = (χ1, . . . , χp). Then ∂x/∂χi = ei and dχi = ei. If φ is a
real-valued function on Rm, then

→
∇Mφ =

←
∇Mφ =

m∑
i=1

∂φ

∂χi
ei

which is simply the gradient of φ.

The following result should not be surprising:

Proposition 7. Suppose (χ1, . . . , χp) and (ξ1, . . . , ξp) are two sets of coordi-
nates on the C1 surface M. Then

dχi =

p∑
j=1

∂χi
∂ξj

dξj.
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5.3 Oriented integrals
Suppose f is a multivector field defined over a surface M. If x : U → M

is a parametrization of M (where U ⊆ Rp) we know from Chapter 3 how to
integrate f over M:∫

M

f =

∫
U

(f ◦ x)
∣∣∣ ∂x
∂χ1

∧ · · · ∧ ∂x

∂χp

∣∣∣. (5.2)

The last expression is evaluated using standard calculus-type techniques and
will produce a number or a multivector.

Suppose that M also has an orientation w. By an oriented integral of f
over M we mean something of (approximately) the form∫

M

fw

where fw is the geometric product of f and w and the integral is evaluated
using (5.2). This is a generalization of the oriented integral∫ β

α

φ(χ) dχ

of single-variable calculus. Since we are integrating along the interval [α, β]
which is a set of real numbers, the only orientations are the real numbers +1
or −1. In this setting,

∫
M
fw amounts to∫

[α,β]

φ (+1) or
∫
[α,β]

φ (−1)

depending on whether we want
∫ β
α
φ or

∫ α
β
φ.

There are a number of variations possible on the form
∫
M
fw, for example,∫

M

wf,

∫
M

fw†,

∫
M

f (−w), etc.

We will refer to them all as oriented integrals of f . Because of the complexity
possible with multivector fields, unlike real-valued single-variable integrals,
these may reduce to more than just two values. The particular oriented inte-
gral we want will depend on the problem we are trying to solve.

Here is a particularly useful example of an oriented integral:
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Proposition 8. Suppose that the C1 surface M has a parametrization x : U →
M which induces coordinates (χ1, . . . , χp). Suppose further that M has an
orientation w that agrees with the parametrization in the sense that

w = λ
( ∂x
∂χ1

∧ · · · ∧ ∂x

∂χp

)
where λ > 0. If f is the multivector field φ (dχ1 ∧ · · · ∧ dχp) where φ is a
real-valued function on M, then∫

M

φ (dχ1 ∧ · · · ∧ dχp)w† =

∫
U

(
φ ◦ x

)
(χ1, . . . , χp) dχ1 · · · dχp

where the last integral is an iterated integral, and each dχi is not a vector
but instead indicates the variable with respect to which one is integrating.

Of course, in this proposition,

λ =
1∣∣∣ ∂x∂χ1

∧ · · · ∧ ∂x
∂χp

∣∣∣ .
The integration formula is very straightforward to establish.

5.4 Induced orientation
In vector analysis, one may talk of using the unit outward normal vector to
the boundary of a region to define an orientation of that boundary. (Figure
5.2.) In a higher dimensional setting, it is not clear one can define analogous
concepts. How, for example, would one do this for the boundary of a k-
dimensional cell in Rn? Geometric algebra is very helpful here.

In general, if M is a p-cell in Rm with orientation w, we would expect an
orientation ∂w of the boundary ∂M of the cell to be a unit tangent (p− 1)-
blade which is continuous (except where one slips from one face to another of
the cell). (Figure 5.3.) We assume here that p ≥ 2 and that M is at least C1.

Assume M is a cell with orientation w. It turns out that if one knows
either the unit outward normal vector n to the boundary ∂M at a given point
or the orientation of ∂M at that point, then one can define the other concept;
further, this can be done in two different, useful ways.
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boundary of R

outward normal vetor

R

∂R

Figure 5.2: A region R with outward normal vector from the boundary

∂w

∂w ∂w

∂M

∂w

M

Figure 5.3: Cell with oriented boundary

The trick is that these quantities should satisfy the equations
→
∂w = nw and

←
∂w = wn.

→
∂w and

←
∂w are, respectively, the right-hand and left-hand induced orienta-

tion on ∂M, and n is the unit outward normal vector to the boundary of M.
In some dimensions, these two induced orientations coincide, and in others,
they have opposite signs. They are connected by the equation(→

∂w
)†

=
←
∂
(
w†
)
.

Example 12. Let the unit square I2 in R2 have orientation w = e1e2. We see
in Figure 5.4 that we should have n = e1 on the right side of ∂I2, n = −e1 on
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n

n

n

n I2

Figure 5.4: Induced orientation on ∂I2

the left side, and so forth. For the right side of the boundary, since n = e1,
we have

→
∂w = e2. For the top side, since n = e2, we see that

→
∂w = −e1. And

so forth. That is,
→
∂w amounts to giving ∂M the counterclockwise orientation.

When dealing with a p-cell M, one can start with an induced orientation
on ∂Ip and use it to construct an induced orientation on ∂M.

Example 13. Suppose M is a 2-cell with a parametrization x : I2 →M. Let I2
have the orientation e1e2, and the orientation of ∂I2 be the counterclockwise
one. (Figure 5.5.) We can transfer the orientation of I2 to an orientation w

x

e1

e2

−e1

M
I2−e2

∂x
∂χ2

− ∂x
∂χ2

− ∂x
∂χ1

∂x
∂χ1

Figure 5.5: Transferring orientation from ∂I2 to ∂M

of M by the transformation

e1 ∧ e2 7→
([
x ′(r0)

]
e1
)
∧
([
x ′(r0)

]
e2
)

=
∂x

∂χ1

(x0) ∧
∂x

∂χ2

(x0)
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where x0 = x(r0). That is, we take w to be

w = λ
( ∂x
∂χ1

∧ ∂x

∂χ2

)
where λ is a scalar chosen to make |w| = 1. In the same way, one can transfer
the tangent 1-blades on ∂I2 to tangent 1-blades on ∂M via the transformation

ei 7→
∂x

∂χi
.

Thus, for example, on the right-hand edge of ∂M (see Figure 5.5), we will
have

→
∂w = α

∂x

∂χ2

where α is a scalar chosen to normalize
→
∂w.

It is straightforward to generalize the discussion of this example to p-
cells and show how to transfer an induced orientation on ∂Ip to an induced
orientation on ∂M.

5.5 The Fundamental Theorem
We now state—without proof—a version of the Fundamental Theorem of ge-
ometric calculus:

Theorem 1. Let M be a C2 p-cell with orientation w. If f is a C1 multivector
field on M, then ∫

∂M

f (
→
∂w) =

∫
M

(→
∇Mf

)
w.

A second version has the same hypothesis and the equation∫
∂M

(
←
∂w) f =

∫
M

w
(←
∇Mf

)
and readily follows from the fact that(∫

N

g
)†

=

∫
N

g†.

There is a third version involving two functions f and g on M, but we do not
discuss it.
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Example 14. The single variable form of the Fundamental Theorem from cal-
culus can be viewed as a special case of Theorem 1: Let M be the interval
[α, β] ⊆ R and f be a real-valued function φ on [α, β]. We take the orien-
tation of [α, β] to be the real number 1. If we think of φ as a function of the
coordinate τ , then dτ = 1 because our tangent space at each point is R. Then∫

M

(→
∇Mf

)
w =

∫ β

α

φ ′.

The boundary of [α, β] is a two-point set, {α, β}. It is reasonable to regard
the induced orientation of the boundary of [α, β] as −1 at α and +1 at β and
to interpret the “integral” over a two-point set as∫

∂M

f
(→
∂w
)

= f(β)− f(α).

Thus Theorem 1 yields ∫ β

α

φ ′ = φ(β)− φ(α).

Example 15. Gauss’s divergence theorem in R3 is∫
∂M

f •N =

∫
M

div f

where f is a vector field, M is a bounded 3-dimensional region, and N is a
unit vector directed outward from and orthogonal to the boundary. If we write
f in the form f =

∑3
i=1 φ ei, then

div f =
3∑
i=1

∂φi
∂χi

.

This result is easily proved in generalized form in Rn using the Fundamental
Theorem of geometric calculus.

Let M be a C2 n-cell in Rn, and let us give it the orientation w = e1 · · · en,
the same as the standard orientation of Rn. If N is the unit outward normal
vector to ∂M and

→
∂w is the right-hand induced orientation on the boundary

of M, they will be related by the equation
→
∂w = N e1 · · · en. Now suppose
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we have a vector field f on M and we write it in the form f =
∑n

i=1 φiei. We
take the divergence of the field to be

div f def.
=

n∑
i=1

∂φi
∂χi

.

Next we write down the Fundamental Theorem as applied to these objects:∫
∂M

f
→
∂w =

∫
M

(→
∇Mf

)
w. (5.3)

We rewrite (5.3) as∫
∂M

f N (e1 · · · en) =

∫
M

(→
∇Mf

)
e1 · · · en,

and since e1 · · · en is a constant and in geometric algebra we can divide by
blades, we reduce (5.3) to ∫

∂M

f N =

∫
M

→
∇Mf. (5.4)

We recall that if (χ1, . . . , χn) are just the coordinates of a point in Rn, then
dχi = ei. Next we turn the crank and calculate that

→
∇Mf =

n∑
i=1

∂f

∂χi
ei = div f +

∑
j<i

(∂φj
∂χi
− ∂φi
∂χj

)
ejei

where
∑

j<i mean that we sum over all indices j and i such that j < i. Now
notice that since f and N are vectors, we have fN = f •N + f ∧ N . If we
substitute back into (5.4), we obtain∫

∂M

f •N + f ∧N =

∫
M

div f +
∑
j<i

(∂φj
∂χi
− ∂φi
∂χj

)
ejei. (5.5)

If we equate the integrals of grade 0 and grade 2 in (5.5), we obtain∫
∂M

f •N =

∫
M

div f and (5.6)∫
∂M

f ∧N =
∑
j<i

∫
M

(∂φj
∂χi
− ∂φi
∂χj

)
ejei. (5.7)
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The first of these equations is the promised generalization of Gauss’s diver-
gence theorem. The second one does not fit comfortably in vector analysis
since it involves 2-vectors. However with a little artful trickery, if we set
n = 3, we may obtain a vector identity involving the cross product.

The Fundamental Theorem can also be used to obtain Green’s theorem
in the plane, Stokes theorem in R3, and the generalized Stokes theorem of
differential form theory.
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0-vector, 2
1-vector, 1, 2
2-vector

magnitude, 3
simple, 2

Tx0M, 21
ΛkRn, 11
Ck, 19
I, 22
k-vector, 1, 2

angle between two k-vectors, 16
magnitude, 16
simple, 2

angle, 16
angle between parallelepipeds, 10
angle between subspaces, 10

binomial coefficient, 13
blade, 23

cell, 22
chain rule, 36, 38
change-of-variables formula, 24
coordinate patch, 21–22, 25

nonsingular, 22
coordinates, 25

differentiability, 19
differentiable, 20
differential, 20, 36
directed line segment, 1

directional derivative, 19, 36
division, 33–34
dot product, 8, 15, 31

frame, 35

geometric algebra, 27, 28
geometric derivative, 38–39
geometric product, 9, 27, 29
grade, 28

hyperplane, 18–19

induced orientation, 42
left-hand, 42
right-hand, 42

integral
oriented, 27
unoriented, 26

Jacobian determinant, 24

line
nonparametric equation, 18

magnitude, 32
2-vector, 3
k-vector, 16

multi-index, 14
ordered, 14

multivector, 28
magnitude, 32
reversion, 31
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nonorientable surface, 24
nonsingular, 22

opposite orientation, 4
orientable surface, 24
orientation, 5, 23, 24

arc, 23
incomparable, 4
non-comparable, 6
opposite, 4, 6
same, 4, 6
surface, 24

oriented integral, 27, 40

parallelepiped, 4
degenerate, 5
vertices, 4
volume, 5

parametrization, 21–22
local, 21
nonsingular, 22

reciprocal basis, 35, 38
reciprocal frame, 35
reciprocal vector, 35
reversion, 9, 14, 30–31

multivector, 31

same orientation, 4
scalar product, 31–32
simple 0-vector, 6
simple 2-vector, 2, 4
simple k-vector, 2, 4, 6

multiplication by a scalar, 7
wedge product, 10

space of k-vectors, 11
dimension, 13

space of tangent vectors, 21
standard basis vectors, iv

surface, 20
Cr, 21

tangent p-vector, 23
tangent vector, 21–22

space of tangent vectors at a point,
21

translation of a set, 18

unit cube, 22
unit interval, 22
unoriented integral, 26

vector derivative, 39
vector space axioms, 11

wedge product, 10, 12, 32–33


