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Abstract

We develop some of the elementary aspects of analysis on Cr man-

ifolds embedded in Rn, keeping in mind that the di�erential structure

of such manifolds must be compatible with or inherited from that of

Rn. The aim of this paper is to provide those working in geometric

algebra and geometric calculus with relatively rigorous derivations of

basic properties of manifolds in such a setting. It is found convenient

to construct a slightly extended version of manifold, one which includes

corners, and a concept of the identity function on the manifold which

takes account of the manifold's embedding in Rn.
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1 Introduction

The inspiration for this paper is the growing �eld of geometric algebra and
geometric calculus. (For example, [1, 3, 9, 20].) Two reasons for interest in
this area are the facts that, on the one hand, there is a strong opinion from
certain quarters ([6] and [7]) that this machinery ought to be the standard
and uni�ed way to present a great deal of mathematics (linear algebra, vector
analysis, complex analysis, di�erential geometry, etc.), and, on the other
hand, the presentation is, in some sense, more elementary and accessible
than in standard approaches.

We are concerned in this paper with the setting for geometric calculus,
and it should be understood that manifolds in this setting are (generally) in
some Rn and inherit the inner product of Rn. Thus we are concerned with
Riemannian manifolds. It seems there are some problems with the way that
setting is handled in geometric calculus.
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Broadly speaking, there are at least two paths one can take to devolop
the theory of the manifolds. On the �rst of these paths�the standard one
in the mathematical literature�manifolds are taken to be Hausdor�, second
countable topological spaces equipped with charts and atlases, and if one is
doing di�erential geometry, they are taken to be C∞. (See, for example, [11]
and [21].) If, more particularly, one wishes them to be Riemannian manifolds,
then they are also equipped with a positive de�nite inner product.

It is important to notice that this �rst path is an intrinsic one. Manifolds
are not assumed to �sit� in any larger space, and any machinery or concepts
(di�erentiation, inner products, etc.) must be de�ned within the manifold.

On the other hand, manifolds in geometric calculus are taken to be sitting
in some vector space, and in this paper, we shall take this to be Rn. This is our
second path to the theory of Riemannian manifolds: manifolds embedded in
Rn. It is a setting in which one has to always be aware of extrinsic properties.
Fortunately we know from the Nash embedding theorem, [5] and [19], that
Riemannian manifolds can always be isometrically embedded in some Rn, so
there is no loss of generality to this assumption.

Now here is an important distinction between the two paths:
In mathematical literature, the machinery of calculus on manifolds (tan-

gent vectors, derivatives, di�erentiability, etc.) is carefully constructed in
the standard setting, that is, on manifolds not embedded in an ambient Rn.
(There may be exceptions where constructions are carried out in R2 and R3

to build up the reader's intuition before getting to the �real� de�nitions.)
I am not aware of a similar construction of such machinery for manifolds

contained in Rn. Presumably, one can establish the �same results� in both
settings, but there is just enough di�erence between the two arenas that
this is not always clear. For instance, in the standard, topological setting,
tangent vectors to a manifold are likely to be di�erential operators acting on
real-valued functions de�ned in the manifold, a construction which at �rst
sight appears arti�cial and unduly abstract. However in the Rn setting, one
can simply and naturally take tangent vectors to be particular elements of
Rn.

A di�culty that arises in the literature of geometric calculus is a tendency
to slide back and forth between the intrinsic, topological setting and the Rn

setting without noting the fact and to assume that what works in one arena
must work in the other. This may well be true, but the logical justi�cation
may be missing.
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For example, in [8], the displayed equation between (19.2) and (19.3) is

∂ = ∂x = I−1m (Im •∇)

where ∂ is the vector derivative on a given manifold, Im is the tangent pseu-
doscalar, and ∇ is the derivative in the ambient vector space that contains
the manifold. The left side is calculated using directional derivatives of the
form

lim
τ→0

f(x(τ))− f(x)

τ

where x(τ) is a curve in the manifold that approaches x as τ → 0. This
is basically an intrinsic calculation. But the right side is calculated using
directional derivatives of the form

lim
τ→0

f(x+ τv)− f(x)

τ

where v is a tangent vector to the manifold at x. Notice that in this last
expression, x+τv is not necessarily on the manifold, so we are assuming that
an extrinsic calculation gives the same result as an intrinsic one.

A second place where confusion can arise is with respect to the identity
function of a manifold. As is remarked in 4.2 of [9], �The identity function
on a manifold (which, of course, maps each point to itself) is not the trivial
function one might at �rst suppose.� The authors use x as the identity
function on a manifold and P as the orthogonal projection map onto the
tangent space for a manifold. They then go on to show that for an arbitrary
vector a, the directional derivative of x in the direction a must be P (a). Now
the reader may be tempted to take a vector a which is not tangent to the
manifold, to extend x to the identity on the ambient vector space containing
the manifold, and to duplicate the calculation. He or she will not obtain
P (a). Clearly something more subtle is going on.

So here is the goal of this paper: It is to develop the basic machinery of
calculus for manifolds that are contained in Rn and to do it in a way that is
both moderately rigorous and that takes advantage of the ambient Euclidean
space. It is hoped this will be of use to workers in geometric calculus and
perhaps in other �elds as well.

We make use of only the elementary machinery of multivariable calculus
in Rn. This is to insure that our derivations, though rigorous, are accessible
to as many people as possible. The results we present are only very basic
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ones. They are not necessarily the most elegant, perspicuous, or concise, but
we hope they are at least correct.

There is little in this paper that ought be considered new or research,
though in the course of this work, it has been found convenient to give a
de�nition of manifold a little more general than the usual one. The result is
manifolds-with-corners, sometimes an in�nite number of them. This is useful
in assuring we can di�erentiate on the boundary of a manifold. We have also
developed a particular construction of the identity function connected with
a manifold, a construction that we call the normal identity. An idea of
this sort seems implicit in the literature of geometric calculus. For both of
these concepts, we make essential use of the fact that the manifold lies in an
ambient Rn.

2 The setting

2.1 Directional derivatives and di�erentiability

If f is a function with domain in Rm and range in Rn, x is a point in dom(f),
and a is a vector in Rm, then the directional derivative of f at the point x in
the direction a is

∂af(x)
def.
= lim

λ→0

f(x+ λa)− f(x)

λ
(1)

where it is understood that λ is a scalar. (The notation a • ∂f instead of ∂af
is often preferred for the directional derivative in the literature of geometric
calculus.)

Remark 1. We will tend to use Greek letters such as λ, α, φ, . . . for real
numbers and real-valued functions and latin letters such as x, y, f, . . . for
points in Rn, vectors, and multivector-valued functions.

Let e1, . . . , em be the standard basis for Rm, that is, ei = (0, . . . , 1, . . . , 0)
where the lone 1 occurs in the ith position. Then by the partial derivative of
f with respect to the ith variable, we mean, of course,

∂f

∂χi

def.
= ∂eif.
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If f : U → Rn where U is an open set in Rm and r = 1, 2, . . ., then we
say that f is a Cr function or, equivalently, that it is r-times continuously
di�erentiable provided

∂rf

∂χi1 · · · ∂χir
(x)

exists and is continuous for for all x ∈ U and for all i1, . . . , ir. If f is Cr for
all positive r, then we say it is C∞.

If U and V are open sets of Rn, we say that f : U → V is a Cr di�eomor-
phism of U to V provided f is one-to-one and onto and both f and f−1 are
Cr.

De�nition 1. If f : A → Rn where A ⊆ Rm, we say that f is di�eren-
tiable at a point x0 of A provided there is a (unique) linear transformation
f ′(x0) : Rm → Rn and a function g de�ned on an open neighborhood of 0
such that

f(x0 + v)− f(x0) = f ′(x0) v + g(v)

where f ′(x0) v means that the linear transformation f ′(x0) is acting on the
vector v and where

lim
v→0

g(v)

|v| = 0.

If f is at least C1 at x0, it is a standard result that it is di�erentiable
there. A useful relation between di�erentiability and directional derivatives
is the following:

∂vf(x0) = f ′(x0) v. (2)

2.2 Geometric algebra

It is not necessary for the reader to understand geometric algebra to follow
our exposition, but we say a few words here to give an idea of the arena in
which we hope these concepts and proofs will be useful. Those who wish to
learn more about geometric algebra and geometric calculus can consult, for
example, [2, 4, 9, 6, 12, 13, 14, 15, 20].

We call elements of the geometric algebra multivectors, and if we refer
to f de�ned on M, we may implicitly have in mind a multivector-valued
function over a manifold in Rn. The particular geometric algebra we tend to
have in mind is the Cli�ord algebra C`n,0(R), though the results we discuss
should apply equally well to the Cli�ord algebra C`p,q(R) where p+ q = n.
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We recall that a basis for the geometric algebra over Rn consists of 1 and
all elements of the form ei1 · · · eik where i1 < · · · < ik and where we are taking
the geometric product of standard basis elements ei1 , . . . , eik . Since {ei}ni=1

is a orthogonal set of vectors, these basis elements can also be written in the
form

ei1 · · · eik = ei1 ∧ · · · ∧ eik .
It follows that every multivector �eld has a unique expansion of the form

f =
n∑

k=0

∑

i1<···<ik

φi1···ik ei1 · · · eik

where each φi1···ik is a real-valued function. We see from this that f is Ck if
and only if each φi1···ik is Ck. (Of course this assertion does not depend on
the use of the standard basis {ei}ni=1. We could use the expansion of f in
terms of any �xed orthogonal basis {ui}ni=1 for Rn.)

It follows from these considerations that proofs involving f de�ned on M

can usually be reduced to proofs that refer to real-valued functions φ on M.

2.3 Manifolds

A p-dimensional Ck manifold M can be de�ned thus:

1. M is a second countable, Hausdor� topological space.

2. There exists a family of homeomorphisms {xα : Uα → Rp, α ∈ A} (an
atlas) such that each Uα is an open set of M and M = ∪α∈AUα.

3. If xα and xβ are members of the atlas, then xα ◦ x−1β : Rp → Rp is a Ck

map.

We will call such a manifold a standard manifold.
The maps xα are called charts. Clearly they could be replaced by maps

yα : Rp → Uα; these are usually called parametrizations or local parametriza-
tions.

For our purposes, it is more convenient to have maps that run from Rp

to M, and we shall feel free to sloppily use either of the terms chart or
parametrization for such maps.

We want to give a somewhat di�erent description of manifold, one that
takes advantage of working in an ambient Rn. We want our new de�nition
to have the following properties:
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1. It should include manifolds-with-corners (such as cells, di�eomorphic
images of p-dimensional rectangles).

2. We should be able to do calculus at boundary points as easily (or almost
as easily) as at interior points. In particular, we should be able to take
limits and directional derivatives.

3. Our new description should clearly give us pretty much everything that
we are already used to calling a manifold.

We will do this by constructing our de�nition in such a way that at every
point x0 in the boundary of M, we can attach a �small tongue� to M so that
we obtain an extended manifold M ′ in which x0 is now an interior point. To
put this another way, we want to be able to extend a chart on the boundary
of M into the ambient Rn.

We start by revisiting the de�nition of a chart.

De�nition 2. We say that x is a Ck p-dimensional chart (or p-chart) in Rn

(where k, p ≥ 1) provided the following hold:

1. x : U → Rn is a one-to-one Ck map where U is an open set in Rp.

2. x ′(t0) has rank p for all t0 ∈ U .

De�nition 3. We say that M, a subset of Rn, is a Ck, p-dimensional
manifold-with-corners in Rn provided the following is true: For every x0 ∈M,
there exists a Ck p-chart x : U → Rn, a point t0 ∈ U , and a nondegenerate
p-simplex P such that

1. t0 ∈ P ⊆ x−1(M) ∩ U ,

2. x0 = x(t0),

3. For every open subset U0 of U , x(U0) ∩M is an open subset of M in
the subspace topology that M inherits from Rn.

(See Figure 1.) We say that x is a chart on M. If a point x0 of M lies in
the range of a chart x, we use such language as x covers x0 or x0 lies in
the coordinate patch x. If there exists a simplex P satisfying condition 1 of
De�nition 3 such that t0 is an interior point of P , then we say that x0 is an
interior point of M. Otherwise, we say that x0 is a boundary point of M and
write x0 ∈ ∂M.
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x

t0

Rn
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Figure 1: A chart may extend beyond the boundary of a manifold

Remark 2. Notice that if x : U → Rn is a chart on M that covers x0 and
V is an open subset of U such that t0 ∈ V , then the restriction of x to V ,
x|V : V → Rn, is still a chart that covers x0.

Remark 3. We also refer to a chart x as a coordinate patch or a (local)
parametrization of M. If x0 = x(τ1, . . . , τp), then we say that x assigns x0
the coordinates (τ1, . . . , τp).

Remark 4. Rather than continually use the clumsy phrase manifold-with-
corners, we shall refer to objects in the sense of De�nition 3 as manifolds.
The reader should keep in mind that is not quite the thing as the usual
de�nition of manifold which we have labelled a standard manifold.

How does our version of a manifold compare with the standard one?
If M is a standard, Ck, p-manifold (k ≥ 1) and f : M → Rn is a Ck

embedding, then it is easily checked that f(M), the �version� of M we have
placed in Rn, can be equipped with charts in our sense. Thus manifolds-
with-corners will include standard manifolds.

Here is an example to show that our concept of manifold is a bit broader
than what one might expect:

Draw a sawtooth curve with an in�nite number of teeth which decrease
in size and converge to a limit point. Use this as the top of an otherwise
rectangular region M. (Figure 2.) M is readily seen to be a manifold-with-
corners in R2.

The crucial question when dealing with our new version of a manifold
is what happens when switching between charts. This is more complicated
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M

Figure 2: A sawtooth �manifold-with-corners�

than on a standard manifold (because of the boundary points) but su�ciently
well-behaved that we get the usual theorems for doing calculus on manifolds.
We spell out the details of switching in Proposition 3.

3 Local description of manifolds and charts

In our �rst result, we show that we may think of p-charts and the manifolds
to which they are �pasted� as (locally) lying) in Rp where Rp is a factor of
Rn = Rp × Rn−p.

In all that follows, we use 0k to denote the zero vector of Rk.

Proposition 1. Let x : W → Rn be a Cr (r ≥ 1) p-dimensional chart in Rn

where W is an open subset of Rp. Suppose x0 = x(t0) where x0 ∈ Rn and
t0 ∈ W . Then there exist open sets U and V in Rn and a map X : U → V
such that

1. X is a Cr di�eomorphism of U to V .

2. (t0, 0
n−p) ∈ U ⊆ W × Rn−p.

3. X(t, 0n−p) = x(t) for all (t, 0n−p) ∈ U . An alternate way to state this
condition is

X
(
U ∩ (Rp × 0n−p)

)
= {x(t) : (t, 0n−p) ∈ U}.

4. If we further suppose that x is a chart on a Cr p-manifold M, then U
and V may be constructed in such a way that

U ∩X−1(M) = {(t, 0n−p) ∈ U : x(t) ∈M} ⊆ W × 0n−p.
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Proof. If p = n, this is simply the inverse function theorem with X being
a restriction of x and the last property of the proposition being vacuous.
Therefore let us assume p < n.

Since x is a Cr chart, we know that {∂eix(t0)}pi=1 is a set of linearly
independent vectors, but it cannot be a basis for Rn since p < n. We can,
without loss of generality, suppose that

{∂eix(t)}pi=1 ∪ {ep+1, . . . , en}

is a linearly independent set (hence a basis for Rn) for all t su�ciently close
to t0. (This is equivalent to saying that the wedge product of these vectors
is nonzero.)

Let us de�ne X : W × Rn−p → Rn by

X(t, t ′) = x(t) + τp+1ep+1 + · · ·+ τnen = x(t) + (0p, t ′) (3)

where t = (τ1, . . . , τp) ∈ Rp and t ′ = (τp+1, . . . , τn) ∈ Rn−p. We see that

∂eiX(t, t ′) =

{
∂eix(t) if i = 1, . . . , p,

ei if i = p+ 1, . . . , n.

These are the column vectors of detX ′(t, t ′), so detX ′(t, t ′) 6= 0 for t su�-
ciently close to t0.

We can now invoke the inverse function theorem (see, for example, [10]
or [16]) and the form of X in (3) to claim that there exist open sets U0, V0
of Rn such that

1. X is a Cr di�eomorphism of U0 to V0,

2. (t0, 0
n−p) ∈ U0 ⊆ W × Rn−p.

We see from (3) that X(t, 0n−p) = x(t) for all (t, 0n−p) ∈ W × Rn−p. This
must also be true for U0 ⊆ W × Rn−p, so this gives us properties 1�3 in the
statement of the proposition.

To obtain property 4 of the proposition, we now �shrink� U0:
Since U0 is open in Rn, it follows that

W0 = {t ∈ W : (t, 0n−p) ∈ U0}
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is an open subset of W , and we also see that t0 ∈ W0. By De�nition 3,
x(W0)∩M must be an open subset of M. Thus there must be an open subset
V1 of Rn such that V1∩M = x(W0)∩M. Set V = V0∩V1; this is again an open
subset of Rn. Since x(W0)∩M ⊆ V0, we have V ∩M = V1∩M = x(W0)∩M.
Set U = X−1(V ); then U is an open subset of U0 (hence open in Rn), and
x0 ∈ U . Properties 1�3 of the proposition hold trivially for the restricted
map X : U → V , and we see that

U ∩X−1(M) = X−1
(
x(W0) ∩M

)

= X−1
(
X(W0 × 0n−p) ∩M

)

= (W0 × 0n−p) ∩X−1(M).

It is straightforward to show that

(W0 × 0n−p) ∩X−1(M) = {(t, 0n−p) ∈ U : x(t) ∈M},

and this yields the desired result.

For our next proposition, we want to show that if we have a p-manifold
lying in a q-manifold which in turn lies in Rn, that is, M ⊆ N ⊆ Rn, then we
may think of them as (locally) lying in the factors Rp and Rq = Rp × Rq−p

of Rn = Rp × Rq−p × Rn−q.
Before doing this, we need some auxiliary results which we state as lem-

mas.

Lemma 1. Suppose that M is a Cr p-manifold in Rn and U is an open set
in Rn such that U ∩M 6= ∅. Then U ∩M is also a Cr p-manifold.

Proof. If x0 ∈ U ∩M, then any Cr p-chart x : V → Rn on M that covers x0 is
automatically such a chart on U ∩M. The only part to check is the existence
of the nondegenerate p-simplex as demanded by De�nition 3.

Since M is a manifold, we know there exists a nondegenerate p-simplex
P in Rp such that t0 ∈ P ⊆ V ∩ x−1(M) where we have assumed x0 = x(t0).
By the continuity of x, we know that V ∩ x−1(U) is an open set in Rp and
t0 ∈ V ∩x−1(U). Let B(t0, ε) be the open ball in Rp centered at t0 and having
radius ε > 0. We can �nd ε so small that

t0 ∈ B(t0, ε) ⊆ V ∩ x−1(U).
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We see that the set P ∩B(t0, ε) is su�ciently simple that we can �nd in it a
nondegenerate p-simplex P ′ such that

t0 ∈ P ′ ⊆ V ∩ x−1(U ∩M).

Lemma 2. Suppose U and V are open sets in Rn and f : U → V is a Cr

di�eomorphism (r ≥ 1). Then f ′(x0) has rank n at every x0 ∈ U .

Proof. Since f−1 ◦ f is the identity map on U , the chain rule tells us that
we have

[(
f−1
) ′

(y0)
] [
f ′(x0)

]
v = v where y0 = f(x0) and v is any vector in

Rn. It follows easily that if {vi}ni=1 is an independent set of vectors, then
{
[
f ′(x0)

]
vi}ni=1 must also be an independent set.

Lemma 3. Suppose U and V are open sets in Rn and f : U → V is a Cr

di�eomorphism (r ≥ 1). If M is a Cr p-manifold and M ⊆ U , then f(M) is
also a Cr p-manifold.

Proof. Let y0 ∈ f(M). We �nd x0 ∈M such that y0 = f(x0). If x : U → Rn

is a chart on M that covers x0, then it is straightforward to check that f ◦ x
is a chart on f(M) that covers y0 and that the requirements of De�nition 3
are satis�ed. (We use Lemma 2 to check the rank of (f ◦ x) ′ at all points of
U .)

Our last lemma seems an obvious result, and we state it without proof.

Lemma 4. Suppose that M ⊆ Rm and m ≤ n. Then M is a Cr p-manifold
in Rm if and only if M× 0n−m is a Cr p-manifold in Rm × Rn−m = Rn.

Proposition 2. Suppose M and N are Cr (r ≥ 1) p- and q-manifolds in
Rn, M ⊆ N, and x0 ∈ M. Then there exist open sets U, V ⊆ Rn, a Cr

di�eomorphism Z : U → V , and s0 ∈ Rp such that

1. Z(s0, 0
n−p) = x0,

2. Z−1(N) ∩ U ⊆ Rq × 0n−q,

3. Z−1(M) ∩ U ⊆ Rp × 0q−p × 0n−q.

Proof. By Proposition 1 applied to a Cr q-chart on N that covers x0, there is
a Cr di�eomorphism X : U0 → V0, where U0, V0 are open subsets of Rn and
x0 ∈ V0, such that

X−1(N) ∩ U0 ⊆ Rq × 0n−q. (4)
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We may suppose that X(t0, 0
n−q) = x0.

Notice that X−1(M) ∩ U0 must lie in Rq × 0n−q. De�ne

π : Rn = Rq × Rn−q → Rq

to be the projection π(t, t ′) = t where t ∈ Rq and t ′ ∈ Rn−q. By Lemmas 1,
2, and 4, we know that π ◦X−1(V0 ∩M) is a Cr p-manifold in Rq.

Let w : W → Rn be a Cr p-chart on M that covers x0 and assume x0 =
w(s0). Set y = π ◦X−1 ◦ w. The appropriate domain for y is W ∩ w−1(V0),
and

y(s0) = π ◦X−1(x0) = π(t0, 0
n−q) = t0.

It is straightforward to check that y is a Cr p-chart, y : W ∩ w−1(V0) → Rq,
on the manifold π ◦ X−1(V0 ∩M) that covers the point t0. We now apply
Proposition 1 to y and obtain the following: There exist open sets U1, V1 in
Rq and a map Y such that

Y : U1 → V1 is a Cr di�eomorphism,

Y (s0, 0
q−p) = t0,

Y (s, 0q−p) = y(s) for all (s, 0q−p) ∈ U1),

U1 ∩ Y −1
(
π ◦X−1(V0 ∩M)

)

=
{

(s, 0q−p) ∈ U1 : y(s) ∈ π ◦X−1(V0 ∩M)
}
.

(5)

Let Id be the identity map on Rn−q and notice that Y ×Id : U1×Rn−q →
V1×Rn−q is a Cr di�eomorphism. The point (t0, 0

n−q) is common to V1×Rn−q

and U0. Set U2 = (V1 ×Rn−q) ∩ U0; this is a nonempty open set in Rn. Now
let U = (Y × Id)−1(U2) and V = X(U2). Of course U and V are open sets
of Rn. We now have the following diagram of maps

U
Y×Id−−−→ U2

X−−−→ V

π

y π

y w

x

π(U)
Y−−−→ π(U2)

y←−−− W0

(6)

where W0 = w−1(V ) ⊆ W .
Set Z = X ◦ (Y × Id). Then Z : U → V is a Cr di�eomorphism. By (4)

and the fact that U ⊆ U0, we see that

Z−1(N) ∩ U ⊆ (Y × Id)−1(Rq × 0n−q) ⊆ Rq × 0n−q.
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This is the �rst of the two desired conclusions of the proposition.
Next choose (s, s1, s2) ∈ Z−1(M) ∩ U where s ∈ Rp, s1 ∈ Rq−p, and

s2 ∈ Rn−q. We know that

(s, s1, s2) ∈ Z−1(N) ∩ U ⊆ Rq × 0n−q,

so s2 = 0n−q. Next notice that (s, s1, 0
n−q) ∈ U so that we have

(s, s1) ∈ π(U) ⊆ U1. (7)

Now consider that

Z(s, s1, 0
n−q) = X

(
Y (s, s1), 0

n−q) ∈ M

implies
(s, s1) ∈ Y −1 ◦ π ◦X−1(M).

We know from (6) that X : U2 → V , thus

X−1(M) = U2 ∩X−1(M) ⊆ X−1(V0 ∩M).

Therefore
(s, s1) ∈ Y −1 ◦ π ◦X−1(V0 ∩M). (8)

From (7) and (8), we have

(s, s1) ∈ U1 ∩
(
Y −1 ◦ π ◦X−1(V0 ∩M)

)
.

It then follows from the last condition of (5) that (s, s1) must have the form
(s, 0q−p), that is, s1 = 0q−p.

Therefore we have shown that Z−1(M) ∩ U ⊆ Rp × 0n−p.

In standard manifold theory, it is crucial that for two charts x and y on a
Ck manifold the composition y−1 ◦x be Ck. Here it is convenient to formulate
a somewhat more complex statement.

Proposition 3. Suppose M is a Ck p-manifold in Rn (k ≥ 1) and x0 ∈
M. Let x : W0 → Rn and y : W1 → Rn be two charts which cover x0 and
x0 = x(r0) = y(s0). Then there exist open sets D0 and D1 in Rp and a map
g : D1 → Rp such that the following hold:

1. r0 ∈ D0 ⊆ W0 and s0 ∈ D1 ⊆ W1.
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2. x|D0 and y|D1 are charts on M.

3. g is Ck.

4. If N0 = x−1(M) ∩ D0 and N1 = y−1(M) ∩ D1, then g : N1 → N0 is
one-to-one, onto, and y = x ◦ g on N1.

Proof. By Proposition 1, there exist open sets U0, U1, V0, V1 in Rn and maps
X : U0 → V0 and Y : U1 → V1 such that the following hold:

1. X and Y are Ck di�eomorphisms.

2. (r0, 0
n−p) ∈ U0 and (s0, 0

n−p) ∈ U1.

3. X(r, 0n−p) = x(r) for all (r, 0n−p) ∈ U0 and Y (s, 0n−p) = y(s) for all
(s, 0n−p) ∈ U1.

4. U0 ∩X−1(M) ⊆ W0 × 0n−p and U1 ∩ Y −1(M) ⊆ W1 × 0n−p.

Notice that x0 = x(r0) = X(r0, 0
n−p) ∈ V0 and similarly x0 ∈ V1. Set

V = V0 ∩ V1,
U2 = X−1(V ) ⊆ U0,

U3 = Y −1(V ) ⊆ U1.

Of course, V is an open neighborhood of x0, and U2 and U3 must be open
sets in Rn, neighborhoods of (r0, 0

n−p) and (s0, 0
n−p) respectively. Next set

D0 = {r ∈ Rp : (r, 0n−p) ∈ U2},
D1 = {s ∈ Rp : (s, 0n−p) ∈ U3}.

D0 andD1 are open sets in Rp and are neighborhoods of r0 and s0 respectively.
It follows that x|D0 and y|D1 are charts in Rn for M that cover x0.

We want to show that

X(N0 × 0n−p) = V ∩M = Y (N1 × 0n−p). (9)

The proof is elementary but su�ciently complicated to warrant showing the
details:

Choose X(z) ∈ X(N0 × 0n−p). We then make the following string of
deductions:

There exists r ∈ N0 such that z = (r, 0n−p). (10)
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r ∈ x−1(M) ∩D0 by the de�nition of N0. (11)

By (11), there exists x1 ∈M such that x(r) = x1. (12)

(r, 0n−p) ∈ U2 = X−1(V ) ⊆ U0 by the de�nition of D0 and U2. (13)

X(z) ∈ V and z ∈ U0 by (10) and (13). (14)

Thus X(z) = X(r, 0n−p) = x(r) by the de�nition of U0. (15)

By (12) and (15), X(z) = x1 ∈M. (16)

So X(z) ∈ V ∩M by (14) and (16). (17)

We have thus established X(N0 × 0n−p) ⊆ V ∩M.
To establish containment in the other direction, we choose s ∈ V ∩M

and write down a second string of deductions:

s ∈ V0 by the de�nition of V. (18)

By de�nition of V0, there exists z ∈ U0 such that s = X(z). (19)

z = X−1(s) ∈ X−1(M) by (19) and de�nition of s. (20)

z ∈ U0 ∩X−1(M) by (19) and (20). (21)

By de�nition of U0, we have z ∈ W0 × 0n−p. (22)

So z = (r, 0n−p) for some r ∈ W0. (23)

Then (r, 0n−p) = z ∈ U0 by (21). (24)

By (19), (21), (24), and de�nition of X, s = X(z) = x(r). (25)

r ∈ x−1(M) by (25) and de�nition of s. (26)

By de�nition of s and (25), z = X−1(s) ∈ X−1(V ) = U2. (27)

From (24) and (27), (r, 0n−p) = z ∈ U2. (28)

So r ∈ D0 by (28) and de�nition of D0. (29)

r ∈ x−1(M) ∩D0 = N0 by (26), (29), and de�nition of N0. (30)

So z = (r, 0n−p) ∈ N0 × 0n−p by (30). (31)

It follows from (31) that s = X(z) ∈ X(N0 × 0n−p). (32)

We thus have V ∩M ⊆ X(N0 × 0n−p).
The other half of (9) is shown similarly.

We now introduce the maps

π : Rn = Rp × Rn−p → Rp where π(r, r ′) = r,

J : Rp → Rp × 0n−p ⊆ Rn where J(r) = (r, 0n−p)
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and note that

x = X ◦ J on D0, and y = Y ◦ J on D1. (33)

We now have the following maps:

D1
J−→ D1 × 0n−p

Y−→ Y (D1 × 0n−p) ⊆ Y (U3) = V,

V
X−1

−→ U2
π−→ Rp.

We see that we can de�ne g : D1 → Rp by

g = π ◦X−1 ◦ Y ◦ J

and that this will be a Ck map. Consider the restriction of g to N1,

N1
J−→ N1 × 0n−p

Y−→ V ∩M
X−1

−→ N0 × 0n−p
π−→ N0

and notice that this is a composition of one-to-one, onto maps. (We have
used (9).) Hence g : N1 → N0 is a one-to-one, onto map.

Finally let s ∈ N1. Then

x ◦ g(s) =
(
X ◦ J ◦ π ◦X−1 ◦ Y ◦ J)(s) = y(s).

4 Tangent spaces

We now de�ne tangent spaces via an appeal to charts, so our �rst concern is
to show this de�nition does not depend on our choice of a chart.

Let M be a Ck (k ≥ 1) p-manifold in Rn and suppose that x0 ∈ M. If
x : U → Rn is a chart on M that covers x0 and x0 = x(r0), then we de�ne

TM(x0, x) = {x ′(r0) v : v ∈ Rp}

where x ′(r0) v indicates the linear transformation x ′(r0) operating on the
vector v.

Proposition 4. If x : U → Rn and y : V → Rn are charts on M that cover
x0, then TM(x0, x) = TM(x0, y).
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Proof. We may assume x0 = x(r0) = y(s0). By Proposition 3, there exist
open sets D0 and D1 in Rp and a Ck map g : D1 → Rp such that

1. g : N1 → N0 in one-to-one and onto where N0 = x−1(M) ∩ D0 and
N1 = y−1(M) ∩D1,

2. r0 ∈ D0 ⊆ U and s0 ∈ D1 ⊆ V ,

3. y = x ◦ g on N1.

By De�nition 3, there exists a nondegenerate p-simplex P such that s0 ∈
P ⊆ y−1(M) ∩ V . Since s0 ∈ D1 and D1 is open, we may, if we wish, choose
P so small that P ⊆ N1.

We can choose points s1, . . . , sp in P such that if vi is the vector from s0 to
si, then {v1, . . . , vp} is a linearly independent set. Since y ′(s0) is one-to-one,
it follows that {y ′(s0)vi}pi=1 is a basis for TM(x0, y). From y = x ◦ g on N1,
we deduce that

y ′(s0) vi = x ′(r0) g
′(s0) vi = x ′(r0)ui

where ui = g ′(s0) vi. This means that each y ′(s0) vi lies in TM(x0, x), so
TM(x0, y) ⊆ TM(x0, x). Containment in the other direction holds by sym-
metry, so the result is established.

Remark 5. Notice that the proof Proposition 4 does not require us to pay
attention to whether x0 is an interior point or boundary point of M.

We now abandon the TM(x0, x) notation for one that depends only on
M and x0:

De�nition 4. By the tangent space to the Ck p-manifold M (k ≥ 1) at the
point x0 ∈M, we mean

Tx0M = {x ′(r0) v : v ∈ Rp}

where x : U → Rn is any chart that covers x0 and x0 = x(r0).

Proposition 5. If M is a C1 p-manifold and x0 ∈M, then Tx0M is a vector
space of dimension p.
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Proof. This is clearly a vector space, so we check only the dimension. Let
x : U → Rn be a p-chart that covers x0. U must be an open subset of Rp

and there must exist t0 ∈ U such that x0 = x(t0). Set ui =
[
x ′(t0)

]
ei for

i = 1, . . . , p. If u is a tangent vector to M at x0, that is, u ∈ Tx0M, then
by De�nition 4, we have u =

[
x ′(t0)

]
v for some v ∈ Rp. We can write v

as a linear combination of the standard basis vectors of Rp, v =
∑p

i=1 λiei,
so we must have u =

∑p
i=1 λiui. That is, every element of Tx0M is a linear

combination of the ui vectors. We also know from De�nition 2 that x ′(t0)
has rank p, so {ui}pi=1 must be a linearly independent set of vectors, a basis
for Tx0M.

Another way to try to de�ne tangent vectors to a manifold at a point is
by means of curves in the manifold running through the point.

De�nition 5. By a curve in Rn, we mean a continuous map c : J → Rn

where J is a nondegenerate interval in R. We say the curve is Ck provided(
dkc/dτ k

)
(τ0) exists at every point τ0 ∈ J . In the case where J is a closed or

half-closed interval, then we calculate derivatives at endpoints as one-sided
limits. Thus, for example, if J = (α, β], then

c ′(β) =
dc

dτ
(β) = lim

τ→β−

c(β)− c(τ)

τ
.

We say c passes through x0 provided there is some τ0 such that x0 = c(τ0).
A curve c lies in a manifold M provided c(τ) ∈M for all τ .

De�nition 6. If M is a Ck manifold (1 ≤ k) and x0 is a point in M, then we
say that v is a tangent vector to M at x0 generated by a curve in the manifold
provided there is a C1 curve c : J → M satisfying x0 = c(τ0) and v = c ′(τ0)
for some τ0 ∈ J .

This way of de�ning tangent vectors is, of course, equivalent to ours
except possibly at boundary points as we explain below.

Proposition 6. Let M be a C1 p-manifold in Rn, let x0 be a point in M,
and let x : U → Rn be a chart covering x0. Then v is a tangent vector to M

at x0 if and only if there is a C1 curve c : (−ε, ε)→ x(U) such that c(0) = x0
and c ′(0) = v.

The proof follows easily from �nding r0 ∈ U such that x(r0) = x0 and
u ∈ Rp such that x ′(r0)u = v and then setting c(λ) = x(r0 + λu).
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Remark 6. If x0 is an interior point of M, then by choosing ε su�ciently
small, we may assume the curve lies completely in M, not just in x(U).
However this may not be true if x0 is a boundary point. For example, if x0
is a vertex of a 2-simplex M in R2 and v is a vector that points from x0 out
of the 2-simplex as in Figure 3, then there may not be any curve at all in M

that generates v. In the next proposition, we show a sense in which every

M
x0

v

Figure 3: A tangent vector that does not correspond to a curve in M

tangent vector to a manifold is generated by curves in the manifold, even in
the case of boundary points.

Proposition 7. Let M be a C1 p-manifold in Rn, let x0 be a point in M, and
let x : U → Rn be a chart covering x0. If u is a tangent vector to M at x0,
then there exist tangent vectors u1, . . . , up to M at x0 and scalars λ1, . . . , λp
such that each ui is generated by a C1 curve in M and u = λ1u1 + · · ·+λpup.

Proof. We need consider only the case where x0 is a boundary point of M.
There must exist t0 ∈ U such that x0 = x(t0) and a vector v ∈ Rp such that
u = [x ′(t0)]v. By De�nition 3, there exists a nondegenerate p-simplex P in
Rp such that t0 ∈ P ⊆ x−1(M)∩U . There exist linearly independent vectors
v1, . . . , vp in Rp with basepoint t0 such that for all i, we have t0 + λvi ∈ P
when λ is su�ciently small. There must exist scalars λ1, . . . λp such that
v =

∑p
i=1 λivi. (See Figure 4.) Set ui = [x ′(t0)]vi for i = 1, . . . , p. Then

u =
∑p

i=1 λiui. Next let us set ci(λ) = x(t0 + λvi). This de�nes a C1 curve
in M since t0 + λvi ∈ P for λ su�ciently small. Notice that ci(0) = x0 and

ci
′(0) = [x ′(t0)]vi = ui.

Thus each ui is generated by a curve in M.

We note that maps between manifolds induce a mapping of tangent vec-
tors to tangent vectors.
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v1

v2

P
v

Figure 4: v is a linear combination of vectors in the simplex

Proposition 8. Suppose that M and N are C1 manifolds in Rm and Rn

respectively and x0 ∈M. If f : M→ N is C1 and u is a tangent vector to M

at x0, then ∂uf(x0) =
[
f ′(x0)

]
u is a tangent vector to N at y0 = f(x0).

Proof. Supposing M to be a p-manifold, we know from Proposition 7 that
we can �nd tangent vectors u1, . . . , up to M at x0 and scalars λ1, . . . , λp such
that each ui is generated by a C1 curve ci lying in M and u =

∑p
i=1 λiui.

Without loss of generality, we may assume each ci de�ned on an interval in
R that contains 0 and that x0 = ci(0) and ui = c

′
i (0). We note that for each

i, f ◦ ci is a C1 curve lying in N and that y0 = f(x0) =
(
f ◦ ci

)
(0). It follows

from Proposition 6 that the vector

vi
def.
= (f ◦ ci)

′
(0) =

[
f ′(x0)

]
c
′

i (0) =
[
f ′(x0)

]
ui

is a tangent vector to N at y0. We then conclude that

[
f ′(x0)

]
u =

[
f ′(x0)

]( p∑

i=1

λiui

)
=

p∑

i=1

λivi

must be a tangent vector to N at y0.

Remark 7. When working with a chart x on a manifold where the associated
coordinates are (τ1, . . . , τp), we may prefer to use the suggestive symbolism

∂x

∂τi
(x0)

def.
= ∂eix(t0). (34)

Each
(
∂x/∂τi

)
(x0) is of course a tangent vector to M at the point x0 cor-

responding to the curve in M along which τi increases while all the other
coordinates remain constant. The set {

(
∂x/∂τi

)
(x0)}pi=1 is a basis for the

tangent space to M at x0.
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5 Two de�nitions of directional derivatives

Before we start on this section, we remind readers, as was pointed out in
Section 2.2, it is su�cient to suppose each function f is real-valued. Yet the
results also apply to vector-valued and multivector-valued functions.

We know what directional derivatives ∂uf are in Rn from Equation (1).
However if f is de�ned on a manifold M in Rm, then in works such as [9],
[17], or [18], directional derivatives are de�ned by constructing curves in M

and making use only of points in the manifold. We make this notion explicit:
Let M be a manifold in some Rm that is at least C1, let x0 ∈M, and let

u be a tangent vector to M at x0. If A ⊆ R and y : A→M is a C1 curve in
M such that y(τ0) = x0 and

lim
τ→τ0

y(τ)− y(τ0)

τ − τ0
= u,

then we set

∂M,uf(x0)
def.
= lim

τ→τ0

(
f ◦ y

)
(τ)−

(
f ◦ y

)
(τ0)

τ − τ0
. (35)

Of course there may be more than one way to choose the curve y, but it
follows from our next consideration that this is unimportant.

The near-equivalence of the ∂uf(x0) and ∂M,uf(x0) is not surprising and
hinges on the fact that if y de�nes a curve on M passing through x0 = y(τ0)
and u = y ′(t0) is a tangent vector to M, then

∂M,uf(x0) =
(
f ◦ y

) ′
(τ0) = f ′(x0) y

′(τ0)

= f ′(x0)u = ∂uf(x0)

where we appealed to Equation (2). We then have the following:

Proposition 9. Let M be a C1 manifold in Rm. Suppose that x0 is a point
in M, u is a vector in Rm, and f is a C1 function on M. If u is tangent
to M at x0 and the directional derivative in the sense of (35) exists, then it
also exists in the sense of (1) and

∂uf(x0) = ∂M,uf(x0).

At interior points of M, the de�nitions of Equations (1) and (35) are
equivalent. However there is a problem with ∂uf(x0) in case x0 ∈ ∂M, that
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is, in case x0 is a boundary point of M. Recall that if a function is Ck on M

(k ≥ 1), then it must possess local Ck extensions to points not in M. The
extension of f beyond M is not in general unique. So when evaluating

∂uf(x0) = lim
λ→0

1

λ

(
f(x0 + λu)− f(x0)

)
,

we may have di�erent values of f(x0 + λu) depending on which extension of
f we appeal to. It turns out that if u is a tangent vector to M there is no
problem:

Proposition 10. Let M be a C1 p-manifold in Rm. Suppose that x0 ∈ M

and u is a tangent vector to M at x0. Let f1 and f2 be two C1 functions on
M such that their restrictions to M agree, that is, f1|M = f2|M. Then

∂uf1(x0) = ∂uf2(x0).

Proof. By Proposition 7, there must exist tangent vectors u1, . . . , up to M

at x0 and scalars λ1, . . . , λp such that u = λ1u1 + · · · + λpup and such that
each ui is generated by a curve ci lying in M. Since ∂ufj(x0) is linear in u
for j = 1, 2, it follows that

∂ufj(x0) =

p∑

i=1

λi
(
∂uifj(x0)

)
.

Then by Proposition 9, we have
(
∂uifj

)
(x0) =

(
∂M,uifj

)
(x0). Since f1 = f2

at all points of M and the curves ci lie in M, it follows that
(
∂M,uif1

)
(x0) =(

∂M,uif2
)
(x0). Therefore,

∂uf1(x0) =

p∑

i=1

λi∂uif1(x0) =

p∑

i=1

λi∂M,uif1(x0)

=

p∑

i=1

λi∂M,uif2(x0) =

p∑

i=1

λi∂uif2(x0) = ∂uf2(x0).

Because of these results, we shall have no further use for the notation
∂M,uf and refer only to ∂uf . However there is the annoying fact that if u
is not tangent to M at x0, then we can get di�erent answers for ∂uf(x0)
depending on which extension of f from M we appeal to. We shall see a way
to deal with this in the section on the normal identity.

24



6 When is a map between manifolds Cq?

We know what it means to say f : U → Rn is Cq when U is an open subset
of Rm. We want to extend that de�nition to the case f : M → N where M

and N are manifolds.
We also need to take into account the fact that there is already a way

of de�ning this notion for standard manifolds, a de�nition which does not
require the manifolds to be embedded in some Rn. Therefore we give two
de�nitions for f : M → N being Cq, one corresponding to what is usually
done for standard manifolds, the other making essential use of the fact that
the manifolds are embedded in an ambient Rn, and we show the equivalence
of these de�nitions.

We �rst give a version of the usual de�nition of a function between stan-
dard manifolds being Cq. Since our manifolds-with-corners are a bit more
general than standard manifolds and our de�nition of charts requires an am-
bient Rn, this is a slight modi�cation of the standard de�nition which requires
no ambient Rn. It is, however, in essence, the same.

De�nition 7. Suppose that f : M → N where M and N are Ck manifolds
lying in Rm and Rn respectively. We say that f is (M,N)-Cq at x0 ∈ M

(where 0 ≤ q ≤ k) provided the following is true: For all charts x : U → Rm

and y : V → Rn on M and N respectively such that x covers x0 and y covers
f(x0), there exists U0 and g : U0 → Rm such that

1. U0 is an open subset of U ,

2. g is Cq,

3. g(t) =
(
y−1 ◦ f ◦ x

)
(t) for all t ∈ U0.

We say f is (M,N)-Cq on M provided it is (M,N)-Cq at all x0 ∈M.

We contrast De�nition 7 with a de�nition of a map f : A → B between
arbitrary sets being Cq which is an extension of what this would be if f were
mapping between open subsets of Rm and Rn:

De�nition 8. Suppose that f : A→ B where A and B are sets lying in Rm

and Rn respectively. We say that f is Cq at x0 ∈ A (where 0 ≤ q) provided
the following is true: There exists an open neighborhood U of x0 in Rm and a
function F : U → Rn such that F is Cq on U and F (t) = f(t) for all t ∈ U∩A.
We say that f is Cq on A provided f is Cq at all points x0 ∈ A.
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We are mainly concerned to apply this de�nition in the case where A and
B are manifolds.

Example 1. Suppose M and N are Ck manifolds lying in Rn and M ⊆ N.
For example, M might be an arc in N. Let I : M→ N be the inclusion map
I(x) = x. We extend I to the identity map I : Rn → Rn and see that by
De�nition 8 the inclusion of a Ck submanifold into a Ck manifold must be a
Ck map.

We want to show De�nitions 7 and 8 are equivalent on manifolds. Here
is a convenient preliminary step:

Proposition 11. Let M be a Cr p-manifold in Rn, and suppose that φ is a
real-valued function that is (M,R)-Cq on M (where 1 ≤ q ≤ r). Then for
every x0 ∈M, there exist W ⊆ Rn and Φ : W → R such that

1. W is an open neighborhood of x0 in Rn,

2. Φ is Cq on W ,

3. Φ(z) = φ(z) for all z ∈M ∩W .

Proof. We know if we choose Cq charts x : U0 → Rn and y : V0 → R on M

and R respectively such that x covers x0, then y
−1 ◦ φ ◦ x must be Cq on r0

where x0 = x(r0). Since y is a chart that maps between subsets of R, we
know that y ′ 6= 0 and hence y−1 is Cq. It follows that φ ◦ x must be Cq at r0.
We may, without loss of generality, suppose that φ ◦ x is Cq on U0.

We now appeal to Proposition 1: There exist open subsets U and V of
Rn and a map X : U → V such that

1. X is a Cr di�eomorphism of U to V ,

2. there exists t0 ∈ domx such that x0 = X(t0, 0
n−p),

3. X(t, 0n−p) = x(t) for all (t, 0n−p) ∈ U ,

4. for all (t, t ′) ∈ U , where t ∈ Rp and t ′ ∈ Rn−p, if X(t, t ′) ∈ M, then
t ′ = 0n−p.

Let π : Rn → Rp be the projection π(t, t ′) = t. We notice that
(
U0×Rn−p)∩U

is an open neighborhood of (t0, 0
n−p) in Rn. We set

W = X
[(
U0 × Rn−p) ∩ U

]
,
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and we know this is an open neighborhood of x0 in Rn. Now de�ne Φ : W →
R by

Φ = φ ◦ x ◦ π ◦X−1.
This is Cq since π and X−1 are C∞ and Cr respectively.

We need only show that Φ is a (local) Cq extension of φ. Choose z ∈
M ∩W . There exists a unique (t, t ′) ∈ U such that t ∈ U0, t

′ ∈ Rn−p, and
z = X(t, t ′). Since z ∈ M, we must have t ′ = 0n−p; thus z = X(t, 0n−p) =
x(t). Then

Φ(z) = φ ◦ x ◦ π ◦X−1(z)

= φ ◦ x ◦ π(t, 0n−p)

= φ ◦ x(t)

= φ(z).

Now here is the equivalence of De�nitions 7 and 8:

Proposition 12. Suppose M and N are Ck p- and q-manifolds in Rm and
Rn respectively. If we have a map f : M→ N, then f is (M,N)-Cr at x0 ∈M

(where 1 ≤ r ≤ k) if and only if f is Cr at x0.

Proof. Suppose that f is (M,N)-Cr at x0.
Let x : U → Rm and y : V → Rn be charts on M and N respectively such

that x0 = x(t0) for t0 ∈ U . We know that y and y−1 ◦ f ◦ x are Cr, so we
may assume f ◦ x = y ◦ y−1 ◦ f ◦ x is Cr on an open neighborhood U ′ of t0
where U ′ ⊆ U .

We can write f =
∑n

i=1 φiei where {ei}ni=1 is the standard basis on Rn

and each φi is a real-valued function on M. Since f ◦ x =
∑

i(φi ◦ x) ei, we
can assume each φi ◦x is a real-valued Cr function on U ′. Now let z : J → J ′

be a Cr chart on R where J and J ′ are open subsets of R and z covers φi(x0).
We know from the de�nition of chart that z ′ 6= 0, so z−1 is also Cr. Hence
z−1 ◦ φi ◦ x is Cr, and it follows that φi is (M,R)-Cr.

By Proposition 11, there exists in Rm an open neighborhood W of x0
such that for all i there is a real-valued Cr function Φi de�ned on W having
the property that Φi(t) = φi(t) for all t ∈M∩W . If we set F =

∑n
i=1 Φiei, it

follows that F is a Cr function onW such that F (t) = f(t) for all t ∈M∩W .
Therefore f is Cr at x0.

Now assume that f is Cr at x0.
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Let x : U → Rm and y : V → Rn be Ck charts on M and N respectively
such that x covers x0. We must show that y−1 ◦ f ◦ x is Cr on some open
neighborhood of t0 where x0 = x(t0).

We may assume that y0 = f(x0) and that y0 = y(s0) for s0 ∈ V . Since f
is Cr at x0, we know there exist an open neighborhood W of x0 in Rm and a
Cr function F : W → Rn such that F (z) = f(z) for all z ∈M ∩W .

We now appeal to Proposition 1: There exist open sets U0, U1 in Rm,
open sets V0, V1 in Rn, and maps X : U0 → U1 and Y : V0 → V1 such that

1. X and Y are Ck di�eomorphisms,

2. (t0, 0
m−p) ∈ U0 and (s0, 0

n−q) ∈ V0,

3. X(t, 0m−p) = x(t) for all (t, 0m−p) ∈ U0 and Y (s, 0n−q) = y(s) for all
(s, 0n−q) ∈ V0,

4. U0 ∩X−1(M) ⊆ U × 0m−p and V0 ∩ Y −1(N) ⊆ V × 0n−q.

We may assume W and U0 chosen so �small� that F (W ) ⊆ V1 and X(U0) =
U1 ⊆ W .

Now set
U ′ = {t ∈ Rp : (t, 0m−p) ∈ U0}.

This is an open neighborhood of t0 in Rp. Next introduce the C∞ maps

π : Rn = Rq × Rn−q → Rq and J : Rp → Rp × Rm−p = Rm

where π is the projection onto the factor Rq and J(t) = (t, 0m−p). We then
de�ne

g = π ◦ Y −1 ◦ F ◦X ◦ J.
Clearly g is Cr, and by checking domains and ranges, we see that g : U ′ → Rq.
We claim that g is the desired extension of y−1 ◦ f ◦ x.

To see this, choose t ∈ U ′ ∩ x−1(M) and note that

F ◦X ◦ J(t) = f ◦ x(t) ∈ V1 ∩N.

Then we have

Y −1 ◦ f ◦ x(t) ∈ V0 ∩ Y −1(N) ⊆ V × 0n−q
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so that

Y −1 ◦ f ◦ x(t) = (s, 0n−q) for some (s, 0n−q) ∈ V0 ∩ Y −1(N).

It follows that
f ◦ x(t) = Y (s, 0n−q) = y(s).

We see from these results that

π ◦ Y −1 ◦ f ◦ x(t) = s = y−1 ◦ f ◦ x(t).

Thus
g(t) = y−1 ◦ f ◦ x(t) for all t ∈ U ′ ∩ x−1(M),

and hence f is (M,N)-Cr at x0.

Because of this result, we now abandon the notation (M,N)-Cq and simply
talk of f : M→ N being Cq.

7 Di�eomorphisms and charts

De�nition 9. Suppose that A and B are sets in Rm and Rn respectively.
We say that f : A→ B is a Ck di�eomorphism if and only if f is one-to-one,
onto, and both f and f−1 are Ck.

Again we are primarily interested in the case where A and B are mani-
folds.

Example 2. Suppose φ is a real-valued, Ck function on M = Rm and
f : Rm → Rm+1 is de�ned by f(x) =

(
x, φ(x)

)
, that is,

f(χ1, . . . , χm) =
(
χ1, . . . , χm, φ(χ1, . . . , χm)

)
.

Set
N = f(Rm) = {

(
x, φ(x)

)
: x ∈ Rm},

that is, N is the graph of φ. Clearly f : M → N is one-to-one, onto, and
Ck. Since f−1

(
x, φ(x)

)
= x, we see that f−1 extends to the projection map

π : Rm+1 → Rm de�ned by

π(χ1, . . . , χm, χm+1) = (χ1, . . . , χm)

which is C∞ on Rm+1; thus f−1 is Ck. Therefore f is a Ck di�eomorphism of
M to N.
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Remark 8. When we talk about f−1 being Ck, we mean some (local) exten-
sion G of f−1 is Ck, and it often happens, as in Example 2, that G cannot
possibly be one-to-one; therefore it is not a true inverse of any function. To
save ourselves introducing extra functions, we shall usually not mention G.
We shall, instead, abuse notation and keep talking about f−1 and (f−1) ′

even when, in the back of our mind, we mean the extended function G.

Example 3. If f : M → f(M) is one-to-one and Ck, this does not insure
that it is a Ck di�eomorphism. To see this, let M be the half-open interval
[0, 1) in R and let f : M→ R2 be

f(θ) = cos(2πθ)e1 + sin(2πθ)e2.

Then f maps M to a unit circle in R2 in a one-to-one C∞ manner, however
f−1 is discontinuous at the point (1, 0).

Proposition 13. Every Cr chart is locally a Cr di�eomorphism. That is, if
x : W → Rn is a p-dimensional Cr (r ≥ 1) chart in Rn and x0 ∈ W such
that x0 = x(t0), then there exists an open neighborhood U of t0 in Rp such
that U ⊆ W and x : U → x(U) is a Cr di�eomorphism.

Proof. We need only show that x−1 has a Cr extension to an open neighbor-
hood of x0 in Rn.

We know by Proposition 1 that there exist open sets U0 and V0 in Rn and
a map X : U0 → V0 such that

1. X is a Cr di�eomorphism of U0 to V0.

2. (t0, 0
n−p) ∈ U0.

3. X(t, 0n−p) = x(t) for all (t, 0n−p) ∈ U0.

Let π : Rn = Rp×Rn−p → Rp be the projection map π(t, t ′) = t where t ∈ Rp

and t ′ ∈ Rn−p. Notice that the map π ◦X−1 : V0 → Rp is Cr.
We have (t0, 0

n−p) ∈ U0, so x0 = x(t0) = X(t0, 0
n−p) ∈ V0. Hence V0 is

an open neighborhood of x0 in Rn.
Set U = {t : (t, 0n−p) ∈ U0}. We see that U is an open neighborhood of

t0 in Rp. If t ∈ U , then (t, 0n−p) ∈ U0 and x(t) = X(t, 0n−p) ∈ V0. Therefore
x(U) ⊆ V0.
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Let y ∈ x(U), and set t = x−1(y). Since x(U) ⊆ V0, we can apply π ◦X−1
to y. We see that

π ◦X−1(y) = π ◦X−1 ◦X(t, 0n−p) = t = x−1(y).

Therefore π ◦X−1 is a Cr extension x−1 to V0.

Proposition 14. Suppose f : M→ N is a C1 onto di�eomorphism where M

and N are C1 manifolds. Let x0 be a point in M and set y0 = f(x0). Let u
and v be tangent vectors to M at x0 and to N at y0 respectively. Then

v =
[
f ′(x0)

]
u if and only if u =

[(
f−1
) ′

(y0)
]
v. (36)

Thus f ′(x0) : Tx0M→ Ty0N is an isomorphism of the �rst tangent space onto

the second one and
[
f ′(x0)

]−1
=
(
f−1
) ′

(y0).

Proof. If we establish the validity of (36), then the conclusion follows from
Proposition 8.

Assume v =
[
f ′(x0)

]
u.

We �rst consider the case where u is a tangent vector generated by a C1

curve c in M. We may suppose that x0 = c(0) and u = c ′(0). Notice that
f ◦ c must be a C1 curve in N. Further, y0 = f(x0) =

(
f ◦ c

)
(0) and

(
f ◦ c

) ′
(0) =

[
f ′(x0)

]
c ′(0) =

[
f ′(x0)

]
u = v.

That is, v is generated in N by the curve f ◦ c. Then by Proposition 9, and
De�nition 6,

[(
f−1
) ′

(y0)
]
v = ∂v

(
f−1
) ′

(y0)

= lim
λ→0

1

λ

(
f−1
(
f ◦ c(λ)

)
− f−1

(
f ◦ c(0)

))

= lim
λ→0

1

λ

(
c(λ)− c(0)

)
= u.

This gives us one of the implications of (36) but only in the case where u is
generated by a curve in M.

In the general case, we know by Proposition 7 that we can write u =∑p
i=1 λiui where each ui is generated by a curve in M. Set vi =

[
f ′(x0)]ui.

By our �rst case, ui =
[(
f−1
) ′

(y0)
]
vi. Then

u =

p∑

i=1

λi[
(
f−1
) ′

(y0)
]
vi = [

(
f−1
) ′

(y0)
]
v.
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This completes the proof of the �rst implication of (36).
The second implication is obtained by a similar argument.

Proposition 15. A C1 di�eomorphism between C1 manifolds preserves di-
mension.

Proof. Let M and N be C1 p- and q-manifolds respectively and suppose
f : M→ N is a C1 di�eomorphism of M onto N. Set y0 = f(x0). Proposition
5 tells us that Tx0M and Ty0N have dimensions p and q, and by Proposition
14, f ′(x0) is an isomorphism of Tx0M onto Ty0N. Therefore p = q.

8 Directional derivatives and coordinates

Suppose that M is a C1 p-manifold in Rn and f is a function de�ned on M.
It is sometimes useful to express f in terms of coordinates and then compute
derivatives with respect to those coordinates. There are two obvious sets of
coordinates in this situation:

First, there are the coordinates (χ1, . . . , χn) attached to every point x of
Rn. In this case,

∂f

∂χi
(χ1, . . . , χn) = ∂eif(χ1, . . . , χn) (37)

where {ei}ni=1 is the standard basis of Rn and we are back at Equation (1)
and calculating the familiar partial derivatives of introductory calculus.

Second, if we have a C1 chart x : U → Rn on M and x induces coordinates
(τ1, . . . , τp) on M, then we can ask for the derivative of f with respect to τi.
Let x0 = x(t0) = x(τ1, . . . , τp) ∈M. We set

∂f

∂τi
(x0)

def.
= ∂ei

(
f ◦ x

)
(t0) =

[(
f ◦ x

) ′
(t0)
]
ei. (38)

Notice that (37) is a special case of (38) if we take M to be Rn and the chart
x to be the identity map on Rn.

If we have a function de�ned on a manifold in terms of one set of coordi-
nates, then we may replace it by one expressed in the other set of coordinates.
That is, f(χ1, . . . , χn) may be replaced by g(τ1, . . . , τp) =

(
f ◦ x

)
(τ1, . . . , τp),

and g(τ1, . . . , τp) may be replaced by
(
g ◦ x−1

)
(χ1, . . . , χn) where x is our

chart. In connection with this, remember (Proposition 13) that every Cr

chart is locally a Cr di�eomorphism.
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Recall that in Remark 7 we de�ned the vector �eld ∂x/∂τi on M by

∂x

∂τi
(x0) =

[
x ′(t0)

]
ei where x0 = x(t0) and ei ∈ Rp (39)

and
{(
∂x/∂τi

)
(x0)

}p
i=1

is a basis for the tangent space Tx0M.
The reader may notice that (38) and (39) do not seem consistent notations

because the domains and ranges of f and x play di�erent roles: The domain
of f is M while x : U → Rn where U is open in Rp and ran(x) ∩M 6= ∅.
We can remedy this inconsistency by assigning two di�erent interpretations
to the symbol x. Sometimes we will continue to think of it as the chart
x : U → Rn on M and sometimes we will think of it as the identity map
x : M→M on M.

If we wish, we can introduce a special symbol for the identity map on
M, namely IM : M → M, so that part of the time we have x = IM. Notice
that the de�nition of (38) is applicable to IM. This raises the question, do
we have

∂x

∂τi
=

∂IM
∂τi

(40)

when x is a chart and we are using the de�nition of Equation (39) on the
left while IM is the identity map on M and we are using the de�nition of
Equation (38) on the right? We answer this in the a�rmative thus:

Proposition 16. Equation (40) is valid.

Proof. Using x as a chart and remembering that x0 = x(t0), we calculate
thus:

∂IM
∂τi

(x0) = ∂ei
(
IM ◦ x

)
(t0)

= lim
λ→0

1

λ

[
x(t0 + λei)− x(t0)

]

=
[
x ′(t0)

]
ei

=
∂x

∂τi
(x0).

This seems a reasonable point to establish a second, closely related fact
which is useful when di�erentiating with respect to a coordinate:
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Proposition 17. If f is a C1 function on M and x0 lies in the domain of f ,
then

∂f

∂τi
(x0) = ∂uif(x0) =

[
f ′(x0)

]
ui

where x is a C1 chart on M covering x0, x0 = x(t0), and

ui =
∂x

∂τi
(x0) =

[
x ′(t0)

]
ei.

Proof. We call on Equations (38) and (2):

∂f

∂τi
(x0) = ∂ei

(
f ◦ x

)
(t0) =

[(
f ◦ x

) ′
(t0)
]
ei.

Appealing to the chain rule, we see that
[(
f ◦ x

) ′
(t0)
]
ei =

[
f ′(x0)

] [
x ′(t0)

]
ei

=
[
f ′(x0)

]
ui

=
(
∂uif

)
(x0)

which is the desired result.

This trick of assigning two interpretations to x does not seem to cause
trouble in practice. See also the remarks at the end of Section 9.

We end with remarks about derivatives of functions which are expressed
in terms of the coordinates induced on a manifold.

We suppose we have a Cr p-manifold M (r ≥ 1) in Rn. Assume the
coordinates (τ1, . . . , τp) are induced on M by a Cr chart x : U → Rn.

We know that (τ1, . . . , τp) is a p-tuple of real numbers, the coordinates of
a point of M induced by the chart x. However we can also consider each τi
to be a map which assigns to a point of M the ith component of its induced
coordinates. To be more precise, suppose that x0 ∈M, that x0 = x(t0), and
that t0 = (τ01, . . . , τ0p). Notice that we have a well-de�ned function

x0 = x(τ01, . . . , τ0p) 7→ (τ01, . . . , τ0p) 7→ τ0i.

We denote this map as τi and have τi(x0) = τ0i. Obviously τi = πi ◦ x−1
where πi is the projection of an ordered p-tuple to its ith component. Since,
by Proposition 13, x−1 is locally Cr, the same must be true of the map τi.
We immediately deduce the following:
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Proposition 18. Assuming τi is C
1,

∂τi
∂τj

=

{
1 if i = j,

0 if i 6= j.

Proof. Suppose that x0 = x(t0). By Equation (38), we have

∂τi
∂τj

(x0) = ∂ej
(
τi ◦ x

)
(t0).

Since τi = πi ◦ x−1, we see that τi ◦ x = πi and compute that

∂ej
(
τi ◦ x

)
(t0) =

(
∂ejπi

)
(t0) = δij

where δij is Kronecker's delta.

Suppose we want to talk about φ being a real-valued function on M

de�ned in terms of the induced coordinates (τ1, . . . , τp) on M. We are led
to consider the expression φ(τ1, . . . , τp). Our chart maps thus: x : U → Rn

where U is an open subset of Rp. If we are thinking of τ1, . . . , τp as real
numbers, then φ(τ1, . . . , τp) is de�ned on U , not on M. However we want
to think of φ(τ1, . . . , τp) as being de�ned on M; therefore we shall not think
of τ1, . . . , τp as real numbers but instead as the corresponding coordinate
functions which are de�ned on M. Notice that if we do this, it makes perfect
sense to write expressions such as φ(τ1, τ2) = τ 31 sin(4τ2).

If we adopt this approach, we �nd that computing ∂
(
φ(τ1, . . . , τp)

)
/∂τi

reduces to the sort of computations we learned in introductory calculus.
Suppose, for instance, we want to compute ∂

(
φ(τ1, τ2)

)
/∂τ1. Choose x0 ∈M

and suppose that x0 = x(τ01, τ02). Then appealing carefully to our de�nitions
and the fact that τi = πi ◦ x−1, we have

∂
(
φ(τ1, τ2)

)

∂τ1
(x0) = ∂e1

(
φ(τ1, τ2) ◦ x

)
(t0)

= ∂e1
(
φ(π1, π2)

)
(t0)

= lim
λ→0

1

λ

(
φ(τ01 + λ, τ02)− φ(τ01, τ02)

)
.

This last expression is exactly the introductory calculus formula for comput-
ing ∂φ(τ1, τ2)/∂τ1. We see from this that if we have, for example, φ(τ1, τ2) =
τ 31 sin(4τ2), where τ1, τ2 are the coordinate functions on a manifold, then

∂
(
φ(τ1, τ2)

)

∂τ1
= 3τ 21 sin(4τ2),
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∂
(
φ(τ1, τ2)

)

∂τ2
= 4τ 31 cos(4τ2).

9 The normal identity

If M is a manifold in Rn, one sometimes wishes to use calculus-type opera-
tions on the identity map I : M → M. In particular, one wants to calculate
directional derivatives. If one extends I to the identity on Rn, this can lead
to di�erent results depending on how M is embedded in Rn. Another way to
extend I�a way which we call the normal identity on M�leads to results
that have a more intrinsic character and are in more accord with the behavior
of the identity map in geometric calculus.

9.1 The idea of the normal identity

Suppose that M is a Cr p-manifold in Rn (where r ≥ 2). Recall that TxM
is the tangent space to M at x. By NxM, the normal space to M at x,
we shall mean the orthogonal complement to TxM. That is, NxM is the
vector subspace of Rn consisting of those vectors v such that v •u = 0 for all
u ∈ TxM.

We then introduce the (n− p)-dimensional hyperplane HxM by

HxM
def.
= {x+ v : v ∈ NxM} = x+NxM.

We think of this as the hyperplane that passes through x and is orthogonal
to M at x. (See Figure 5 for the cases in R3 where p = 1 and p = 2.)

M
M

HxMHxM
HxM

p = 1 x
x p = 2

Figure 5: HxM for 1- and 2-manifolds
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It is now easy to explain what we want the normal identity to be: For
y ∈ Rn, provided y is su�ciently close to M, we set

IM(y) = x when y ∈ HxM

where IM is our symbol for the normal identity map associated with M. It
is clear that for x ∈M, we have IM(x) = x.

9.2 Construction of the normal identity

In what follows, if x0 is a point in Rn and ξ is a positive number, then by
B(x0, ξ) we mean the set of x ∈ Rn such that |x− x0| < ξ. That is, B(x0, ξ)
is the open ball in Rn centered at x0 with radius ξ. If t ∈ Rp and t ′ ∈ Rq,
then B

(
(t, t ′), δ

)
is the open ball in Rp+q that is centered at (t, t ′) ∈ Rp+q.

Proposition 19. Suppose that M is a Cr p-manifold (where r ≥ 2 and p ≥ 1)
in Rn and x0 ∈ M. Then for every ξ > 0 there is an open neighborhood V
in Rn of x0 and a map IM : V → V such that the following hold:

1. V ⊆ B(x0, ξ).

2. For all x ∈ V ∩M and y ∈ V , IM(y) = x if and only if y ∈ V ∩HxM.

3. IM is Cr−1.

Remark 9. If x ∈ V ∩M, then x ∈ V ∩HxM so that IM(x) = x. Thus IM
is an extension of the identity map on M.

We also note that the map IM is almost uniquely de�ned. If both the
conditions y ∈ V ∩HxM and x ∈M are satis�ed, then IM(y) = x; that is, IM
is unique under those conditions. However if y ∈ V but y /∈ HxM for some
x ∈M�a situation which can occur for y close to the boundary of M�then
there may be more than one choice for IM. We shall say more about this in
the proof of the proposition.

Proof of Proposition 19. If p = n, then NxM = {0} whenever x ∈ M, and
thus HxM = {x}. If we take IM to be the identity map on Rn, then the
result is trivially true.

Therefore, from this point on, we assume p < n.
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Choose a Cr chart x : W → Rn on M with x0 = x(t0). We know that
{∂eix(t0)}pi=1 is a basis for Tx0M. Recalling that {ei}ni=1 is the standard basis
for Rn, we may suppose, without loss of generality, that

{∂eix(t)}pi=1 ∪ {ep+1, . . . , en} (41)

is a linearly independent set (hence a basis for Rn) at t = t0. More than
that, by continuity, (41) must be a basis for Rn for all t su�ciently close to
t0.

Next construct the reciprocal frame {mi(x)}ni=1 for (41) where x = x(t).
By the de�nition of a reciprocal frame, this is a basis for Rn such that

δij =

{(
∂eix

)
•mj for i ≤ p,

ei •mj for p < i,

where δij is Kronecker's delta. Of course, each mj is a function of x and thus
of t, mj = mj(x) = mj

(
x(t)

)
. Since

(
∂eix

)
•mj = 0 for i ≤ p and j > p, (42)

we see that
{∂eix(t)}pi=1 ∪ {mp+1(x), . . . ,mn(x)} (43)

must be a basis for Rn for t su�ciently close to t0.
On an open neighborhood of the point (t0, 0

n−p), we now construct a map
Y between subsets of Rn. Let t = (τ1, . . . , τp) ∈ Rp and t ′ = (τp+1, . . . , τn) ∈
Rn−p. Set

Y (t, t ′) = x(t) + τp+1mp+1(x) + · · · τnmn(x) (44)

where we understand that x = x(t). Notice that x0 = Y (t0, 0
n−p). We know

that the map x is Cr and each ∂eix must be at least C
r−1. Since the reciprocal

vectors mi are constructed from the vectors ∂eix by an algebraic process, we
see that Y must be at least Cr−1.

It is straightforward to calculate that

∂Y

∂τi
(t0, 0) =

{
∂eix(t0) if i = 1, . . . , p

mi(x0) if i = p+ 1, . . . , n.

Since this is a linearly independent set and ∂eix andmj are C
r−1 (with r ≥ 2),

we see that det(Y ′) must be nonzero for (t, t ′) su�ciently close to (t0, 0).
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Therefore by the inverse function theorem, there exist open sets U1 and V1
of Rn such that Y : U1 → V1 is a Cr−1 di�eomorphism and (t0, 0

n−p) ∈ U1.

Case 1. Let us now suppose that x0 is an interior point of M and that
ξ > 0 is a given value.

Because x and Y are continuous maps, there exists ε > 0 such that

B(t0, ε) ⊆ W = domain of x,

B
(
(t0, 0

n−p), ε
)
⊆ U1,

Y
(
B
(
(t0, 0

n−p), ε
))
⊆ V1 ∩B(x0, ξ).

(45)

It follows that x0 ∈ x
(
B(t0, ε)

)
⊆M. (See Figure 6 for how these open balls

relate to one another and how they map under Y .)

Rp

Rn−p

B(t0, ǫ)

B
(
(t0, 0

n−p), ǫ)
)

Y

x0

M

Y
[
B
(
(t0, 0

n−p), ǫ
)]

(t0, 0
n−p)

Figure 6: Y mapping open balls

Now let

U = B
(
(t0, 0

n−p), ε
)
,

V = Y (U).

Since U ⊆ U1 and V ⊆ V1, we see that Y : U → V is still a Cr−1 di�eomor-
phism. Because x0 is an interior point of M, x(W ) ∩M is an open subset of
M, and Y is continuous, we can impose a further restriction on ε and require
that

V ∩ x(W ) = Y
(
B
(
(t0, 0

n−p), ε
))
∩ x(W )

= V ∩M.
(46)

We now develop the ways in which certain sets are related to one another.
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Suppose that x = x(t) where t ∈ B(t0, ε). We know that dimTxM = p,
so dimNxM = n−p. Since mp+1(x), . . . ,mn(x) are linearly independent and
orthogonal to M at x, it follows that {mi(x)}ni=p+1 must be a basis for NxM.
We know that HxM = x+NxM, and in (44), the de�nition of Y , the scalars
τp+1, . . . , τn range over all values of R; it follows that for t held constant, we
have

Y (t× Rn−p) = HxM.

However since we have the constraint Y : U → V , the relation we really want
is

Y
(
U ∩ (t× Rn−p)

)
= V ∩HxM where t ∈ B(t0, ε). (47)

Next notice that

U ∩ (Rp × 0n−p) = B
(
(t0, 0

n−p), ε
)
∩ (Rp × 0n−p) = B(t0, ε)× 0n−p (48)

and
Y
(
B(t0, ε)× 0n−p

)
= x

(
B(t0, ε)

)
,

hence
Y (U ∩ (Rp × 0n−p) = x

(
B(t0, ε)

)
. (49)

From (48), we have U ∩ (Rp × 0n−p) ⊆ W × 0n−p, so we must have

U ∩ (Rp × 0n−p) = U ∩ (W × 0n−p).

By this fact and (46), we see that

Y
(
U ∩ (Rp × 0n−p)

)
= V ∩M. (50)

Combining (49) and (50) gives us

x
(
B(t0, ε)

)
= V ∩M. (51)

We are now ready to de�ne the normal identity IM : V → V ∩M. Let
π : Rn → Rp be the map π(t, t ′) = t. Notice that in the following diagram,
all the maps are onto:

V
Y←− U

π−→ B(t0, ε)
x−→ V ∩M.

We set
IM

def.
= x ◦ π ◦ Y −1. (52)
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By construction, IM is Cr−1, and we know from (45) that V ⊆ B(x0, ξ), so
the only thing we need to check is the relation of IM to Hx.

Choose y ∈ V and x ∈ V ∩M. We know that

U ∩ (t× Rn−p) = B
(
(t0, 0

n−p), ε
)
∩ (t× Rn−p),

and this will be nonempty if and only if (t, 0n−p) lies in B
(
(t0, 0

n−p), ε
)
, that

is, if and only if t ∈ B(t0, ε). Thus we can write

U =
⋃

t∈B(t0,ε)

(
U ∩ (t× Rn−p)

)
,

and by (47) this becomes

V =
⋃

t∈B(t0,ε)

(
V ∩Hx(t)M

)
.

Since the sets t × Rn−p are pairwise disjoint, the same must be true for the
sets V ∩Hx(t)M. Thus for our y ∈ V , there exists a unique t ∈ B(t0, ε) such
that y ∈ Hx(t)M. We can write this y in the form

y = x(t) + τp+1mp+1(x(t)) + · · ·+ τnmn(x(t)) = Y (t, t ′)

where t ′ = (τp+1, . . . , τn) ∈ Rn−p is uniquely determined for y. By the
de�nition of IM, we have IM(y) = x(t). We see that IM(y) = x if and only if
V ∩Hx = V ∩Hx(t). Thus IM(y) = x if and only if y ∈ Hx.

Case 2. Suppose that x0 is not an interior point of M, that it is a
boundary point. We know that we can construct a slightly larger Cr manifold
M+ containing M such that x0 is an interior point of M+. We now �nd
an open neighborhood V of x0 in Rn and construct the normal identity
IM+ : V → V for M+. This will be a Cr−1 map and will automatically
have the properties desired for IM, so we may take IM+ to be our IM.

We note that this map is not uniquely de�ned since there must exist an
in�nite number of ways to expand M to M+.

9.3 Properties of the normal identity

From this point on, we assume M is a Cr p-manifold in Rn with r ≥ 2.

We must not confuse IM with an orthogonal projection onto a vector
subspace. The connection with subspace orthogonal projections is this:

41



Corollary 1. Let Px : Rn → TxM be the orthogonal projection map onto the
tangent space of M at the point x ∈M. Then

IM(y) = x0 implies Px0(y) = Px0(x0).

Proof. By Proposition 19, if IM(y) = x0, it follows that y ∈ Hx0M. From
this we see that we can write y = x0 + v where v is orthogonal to Tx0M.
Therefore

Px0(y) = Px0(x0) + Px0(v) = Px0(x0).

Unless we say otherwise below, we shall use Px0 for the orthogonal pro-
jection map Rn → Tx0M where M ⊆ Rn.

Corollary 2. If x0 ∈M and a ∈ Rn, then

∂aIM(x0) = Px0a.

Proof. We treat x0 as an interior point of M.
De�ne a function h from an open neighborhood of 0 in R into M by

h(λ) = IM(x0 + λ a). Since IM is Cr−1, we see that h de�nes a Cr−1 path in
M passing through x0 at λ = 0. Then

∂aIM(x0) = lim
λ→0

1

λ

(
IM(x0 + λ a)− IM(x0)

)
= h ′(0). (53)

Since h(λ) = IM(x0 + λ a), by Corollary 1, Ph(λ)
(
h(λ)

)
= Ph(λ)(x0 + λ a).

This amounts to

Ph(λ)

(
h(λ)− h(0)

λ
− a
)

= 0. (54)

It is straightforward to construct an orthonormal basis {ui(x)}pi=1 for TxM
for all x in some neighborhood in M of x0 such that x 7→ ui(x) is Cr−1. For
such x, the orthogonal projection map is given by

Px(v) =

p∑

i=1

(
v •ui(x)

)
ui(x).

Then Equation (54) becomes

p∑

i=1

[
ui
(
h(λ)

)
•

(
h(λ)− h(0)

λ
− a
)]

ui
(
h(λ)

)
= 0.
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Using the facts that all the functions involved are Cr−1 and h ′(0) is a tangent
vector to M, we let λ → 0 and obtain h ′(0) = Px0(a). This gives us the
desired result.

Given an f de�ned on M which is Cr in terms of charts on M, we know
from Proposition 12 that we can extend f (locally) to a Cr function on Rn.
The normal identity gives us another way to extend an f from M to open
subsets of Rn.

De�nition 10. Given a manifold M in Rn and a function f whose domain
lies in Rn, we say f is normally extended from M provided f = f ◦ IM in
neighborhoods of points of M.

Notice that if f and M are Cr, then the most we can hope for from f ◦ IM
is that it is Cr−1 on an open set Rn.

Corollary 3. If f is a normally extended Cr function on M, x0 is a point
on M, a is a vector in Rn, and b = Px0a, then

∂af(x0) = ∂bf(x0).

Proof. This follows from Corollary 2 and

[
f ′(x0)

]
a =

[
f ′(x0) I

′

M(x0)
]
a =

[
f ′(x0)

]
b.

It is trivially true that if we have Cr manifolds where one contains the
other, M ⊆ N, then at points su�ciently close to M, we have IN ◦ IM = IM.
It is not true in general that IM ◦ IN = IM.

One �nal comment concerns a matter of notation from the literature of
geometric calculus.

Given a manifold M, the symbol x is used in geometric calculus, in works
such as [9] and [20], to denote the identity function on M or an arbitrary
point of M. Its behavior is like that of our concept of the normal identity,
and this suggests the use of x as an alternate symbol for IM.

A drawback of this practice is that we now have three ways in which we
use this small and innocent-looking symbol:

1. As a chart, x : U → Rn on M.
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2. As a point on the manifold, x ∈M.

3. And now as a particular map, x = IM : V → V acting on neighborhoods
of points of M.

There is a possibility of confusion. However in practice, the particular mean-
ing of any given x should be clear, and the resulting applications have an
appealing quality of naturalness. For example, it seems reasonably sensible
to write

f = f ◦ IM = f(x).

Acknowledgment: Special thanks are due to Alan Macdonald for suggest-
ing the writing of this article.
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