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1. INTRODUCTION. In previous issues of this MONTHLY, Quadrat, Lasserre, and
Hiriat-Urruty [6] generalized the Pythagorean theorem to orthogonal n-simplexes and
Nash [5], taking a somewhat different approach, derived the n-dimensional version of
the parallelogram law. We would like to argue that a more convenient, uniform, and,
indeed, intuitive platform for the derivation of these results and of similar geometric
results is provided by the machinery of wedge products and k-vectors.

To do this, we show that it is possible to introduce simple k-vectors—those of the
form a1 ∧ · · · ∧ ak where a1, . . . , ak are vectors in some R

n—as geometric objects. In
calculus or an introductory physics class, one sometimes hears a vector described as an
equivalence class of directed line segments. It turns out that one can, in a similar way,
define a simple k-vector as an equivalence class of oriented parallelepipeds. We shall
show that this geometric definition leads to the standard properties of exterior algebra.

To illustrate the use and convenience of this machinery, we then generalize the
triangle law of vector addition and the law of cosines to n-simplexes and rederive the
n-dimensional versions of the parallelogram law and the Pythagorean theorem.

2. MATRICES. In all that follows, we restrict ourselves to vectors in R
n and make

essential use of the dot product: recall that if a, b ∈ R
n with a = (α1, . . . , αn) and

b = (β1, . . . , βn), then a · b = α1β1 + · · · + αnβn .
It will frequently be useful to talk about an n × k matrix A = (a1, . . . , ak) where

each ai ∈ R
n . The matrix entries are not really specified without first giving a basis

for the space. Thus, if we have in mind the basis { f1, . . . , fn} for R
n and we can write

ai = α1i f1 + · · · + αni fn for each i , then we mean the matrix

A = (a1, . . . , ak) =

⎛
⎜⎜⎝

α11 α12 . . . α1k

α21 α22 . . . α2k
...

...
...

αn1 αn2 . . . αnk

⎞
⎟⎟⎠ .

We do not always use the standard basis for R
n . It is often convenient to use

a basis { f1, . . . , fn} for R
n having the property that { f1, . . . , fk} is a basis for

span{a1, . . . , ak}, in which case

A = (a1, . . . , ak) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α11 . . . α1k
...

...

αk1 . . . αkk

0 . . . 0
...

...

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We may then talk about the matrix
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A′ =
⎛
⎜⎝

α11 . . . α1k
...

...

αk1 . . . αkk

⎞
⎟⎠

associated with the vector subspace span{a1, . . . , ak}, and, by an abuse of notation, we
write A′ = (a1, . . . , ak) even though A and A′ are different size matrices.

We will always write our matrices with respect to orthonormal bases because of
an important connection between matrix multiplication and the dot product: if A =
(a1, . . . , ak) and B = (b1, . . . , bk), where each ai and b j belongs to R

n , and the ma-
trices are specified with respect to an orthonormal basis for R

n , then

BT A =
⎛
⎜⎝

b1 · a1 . . . b1 · ak
...

...

bk · a1 . . . bk · ak

⎞
⎟⎠

where BT is, of course, the transpose of the n × k matrix B. A nice feature of this last
matrix is that it is independent of the choice of basis. We also feel free to write it as
BT A = (bi · a j ) or (bi · a j )k×k .

Note that if {a1, . . . , ak} or {b1, . . . , bk} is linearly dependent, then det(ai · b j ) =
0. Because of this, in what follows, we shall usually only deal with the case where
{a1, . . . , ak} and {b1, . . . , bk} are sets of linearly independent vectors.

3. SIMPLE k-VECTORS.

Parallelepipeds. A parallelogram A in R
n is specified by a base point P and two

vectors a1, a2 ∈ R
n which we can think of as “edges” (see Figure 1). The points of

A are those of the form P + τ1a1 + τ2a2 where τ1 and τ2 are arbitrary scalars such
that 0 ≤ τi ≤ 1. The 1-dimensional faces of A are obtained by setting one τi equal
to 0 or 1 and permitting the other τ j to range arbitrarily over the unit interval. Thus
one example of a 1-dimensional face of A consists of points of the form P + τ1a1 and
another of points of the form P + a1 + τ2a2. The 0-dimensional faces (or vertices) of
A are found by setting both τ1 and τ2 equal to 0 or 1. In this example, the vertices are

P, P + a1, P + a2, and P + a1 + a2.

�����������
�
�

�
�
�

P a1

a2

Figure 1. A parallelogram.

More generally, a k-dimensional parallelepiped A in R
n with base point P ∈ R

n

and “edges” a1, a2, . . . , ak , vectors in R
n , consists of all points of the form

P + τ1a1 + τ2a2 + · · · + τkak where 0 ≤ τ1, τ2, . . . , τk ≤ 1.

An example where k = 3 is shown in Figure 2. As in the 2-dimensional example, one
specifies m-dimensional faces of A by setting k − m of the τi ’s to 0 or 1. We will
consider a k-dimensional parallelepiped as degenerate precisely when {a1, . . . , ak} is
a linearly dependent set of vectors.
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a2
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Figure 2. A 3-dimensional parallelepiped.

We will not in general distinguish between parallelepipeds with different base
points so long as they have the same “edges.” Because of this, we can write things
like “the parallelepiped associated with the k-tuple of vectors (a1, . . . , ak)” or “the
k-dimensional parallelepiped with matrix A = (a1, . . . , ak).”

Orientation. We want our parallelepipeds to be not just point sets but to have an
orientation as well. We will define orientation for ordered k-tuples (a1, . . . , ak) of
vectors in R

n , and this attaches an orientation to the parallelepiped associated with
(a1, . . . , ak).

Consider the directed line segments in Figure 3. We see that a and b have the same
orientation, that c has the opposite orientation to a and b, and that, because it is not
parallel to them, the orientation of d is not comparable to that of a, b, and c. If we
translate the directed line segments to the origin and think of them as vectors, we can
say that a, b, and c are comparable because they all lie in a common 1-dimensional
vector subspace V of R

n while d is non-comparable because it is not in V . Also, a
and b have the same orientation because a · b > 0 while c has the opposite orientation
because a · c < 0 and b · c < 0.

a

b

c

d

Figure 3. Comparable and non-comparable orientations.

We generalize this idea to ordered k-tuples of vectors:

Definition 1. Let (a1, . . . , ak) and (b1, . . . , bk) be two ordered k-tuples of vectors
from R

n .

1. If {a1, . . . , ak} and {b1, . . . , bk} are both linearly dependent sets, then
(a1, . . . , ak) and (b1, . . . , bk) are considered to have the same orientation,
the 0-orientation.

2. Suppose {a1, . . . , ak} and {b1, . . . , bk} are both linearly independent sets and
lie in the same k-dimensional vector subspace V of R

n . Then (a1, . . . , ak) and
(b1, . . . , bk) have the same (nonzero) orientation provided det(ai · b j )k×k > 0. If
det(ai · b j )k×k < 0, then they have opposite orientations. (Note: It is easily seen
that we cannot have det(ai · b j ) = 0.)

3. In all other circumstances, the orientations of the two k-tuples are non-
comparable.
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Example 1. Let us take vectors

a1 = (1, 0, −1), a2 = (1, −1, 0), b1 = (0, 1, −1), b2 = (1, 1, −2)

in R
3. These all lie in the 2-dimensional vector subspace defined by the equation

x1 + x2 + x3 = 0, so we can compare the orientations of (a1, a2) and (b1, b2). Since
det(ai · b j ) = 3, we see that (a1, a2) and (b1, b2) have the same orientation.

We gain some intuition as to the meaning of “same orientation” if we imagine we
are “looking down” on the plane x1 + x2 + x3 = 0 (see Figure 4). Notice that a1 rotates
into a2 and b1 rotates into b2 on their respective parallelograms in the counterclock-
wise direction. If the rotations had been in opposite directions, then the parallelograms
would have had opposite orientations.

x2

a2

x1

x3

b1

b2

a1

Figure 4. Looking “down” on (a1, a2) and (b1, b2).

Example 2. Let

a1 = (1, 1, −2), a2 = (−3, −3, 6), b1 = (1, 0, −1), b2 = (0, 0, 0).

We see that (a1, a2) and (b1, b2) have the same orientation, the 0-orientation.

Example 3. If {a1, . . . , ak} is a set of linearly independent vectors, then switching ai

and a j for distinct i and j changes the orientation of (a1, . . . , ak). Thus (a1, a2, a3)

and (a2, a1, a3) have opposite orientations, but (a1, a2, a3) and (a3, a1, a2) have the
same orientation.

Remark 1. Suppose {a1, . . . , ak} and {b1, . . . , bk} are linearly independent sets de-
termining the same k-dimensional vector subspace V of R

n . If F is the k × k matrix
of a linear transformation of V to V carrying each ai to bi , then it can be shown that
(a1, . . . , ak) and (b1, . . . , bk) have the same orientation if and only if det F > 0.

From this point on, we shall feel free to refer to “the oriented parallelepiped
(a1, . . . , ak)” where a1, . . . , ak are vectors in R

n .

Volume. Let A be the k-dimensional parallelepiped (a1, . . . , ak).

Definition 2. We define the k-dimensional volume of A by vol(a1, . . . , ak) =√
det(ai · a j ).
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We need to see that this definition makes sense calculationally and geometrically.
Suppose that {a1, . . . , ak} is a set of vectors in R

n and V is a k-dimensional vec-
tor subspace containing the ai ’s. Let A be the k × k matrix A = (a1, . . . , ak) cal-
culated with respect to an orthonormal basis of V . Then det(ai · a j ) = det(AT A) =
(det(A))2 ≥ 0, so that

√
det(ai · a j ) can always be evaluated.

Notice that vol (a1, . . . , ak) > 0 if and only if {a1, . . . , ak} is a linearly independent
set. Thus we also have the following:

Proposition 1. The k-dimensional parallelepiped associated with the k-tuple of vec-
tors (a1, . . . , ak) is nondegenerate (that is, {a1, . . . , ak} is a linearly independent set)
if and only if vol (a1, . . . , ak) > 0.

Example 4. Let a1 = (1, 0, 0) and a2 = (0, 1, 1). These are orthogonal vectors in R
3,

so the area of the parallelogram associated with (a1, a2) must be |a1| |a2| = √
2. This

turns out to be precisely
√

det(ai · a j ).

Example 5. More generally, it is a standard exercise in a calculus text (see, for ex-
ample, [8]) to show that the area of the parallelogram in R

3 associated with (a1, a2)

is given by |a1 × a2| where × is the standard vector product. It is straightforward to
show that |a1 × a2|2 = det(ai · a j ).

Example 6. Again it is a standard exercise in a calculus text (see [8]) to see that
the volume of the 3-dimensional parallelepiped in R

3 associated with (a1, a2, a3) is
|a1 · (a2 × a3)| = | det(A)| where A is the matrix A = (a1, a2, a3) expressed in terms
of the basis vectors i, j, k. Then the volume is given by | det(A)| = √

det(AT A) =√
det(ai · a j ).

Our definition of volume uses the Gram determinant. A good discussion of this
topic and its relation to volume is found in [2] and [7]. There is a discussion of paral-
lelepiped volume from a somewhat different viewpoint in [4].

The definition of simple k-vector.

Definition 3. By the simple k-vector a1 ∧ · · · ∧ ak , where a1, . . . , ak ∈ R
n , we mean

the set of all ordered k-tuples (b1, . . . , bk) such that (a1, . . . , ak) and (b1, . . . , bk)

have the same orientation and volume. We indicate the relation between these two
k-tuples by writing (a1, . . . , ak) ∼ (b1, . . . , bk).

If (a1, . . . , ak) has the 0-orientation (or, equivalently, vol(a1, . . . , ak) = 0), then
we write a1 ∧ · · · ∧ ak = 0.

Remark 2. a1 ∧ · · · ∧ ak = 0 if and only if {a1, . . . , ak} is a linearly dependent set.
As a consequence, if a1, . . . , ak ∈ R

n and k > n, then a1 ∧ · · · ∧ ak = 0. In particular,
we have a1 ∧ · · · ∧ ak = 0 whenever ai = a j for some i 
= j .

On the other hand, if a1 ∧ · · · ∧ ak = b1 ∧ · · · ∧ bk 
= 0, then {a1, . . . , ak} and
{b1, . . . , bk} must both span the same k-dimensional vector subspace of R

n .

Definition 4. If V is a vector subspace of R
n , we will say that a is a simple k-vector

in V (or lies in V ) if we can write a = a1 ∧ · · · ∧ ak where each ai ∈ V .

We see from the last remark that every nontrivial simple k-vector lies in a uniquely
determined k-dimensional subspace; however, trivial simple k-vectors lie in every vec-
tor subspace of R

n .
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Example 7. Consider various simple 2-vectors lying in a common plane as in
Figure 5. The orientations are represented by curved arrows. We have a1 ∧ a2 =
(2a1) ∧ ( 1

2 a2) = b1 ∧ b2. We may think of b1 ∧ b2 as obtained from a1 ∧ a2 by
a rotation in the plane; neither orientation nor area is changed. On the other hand,
a1 ∧ a2 
= a2 ∧ a1 or (3a1) ∧ a2—in the first case because of different orientations and
in the second because of different areas.

a2

2a1

a1 ∧ a2

a2

a2 ∧ a1 (2a1) ∧ ( 1
2 a2)

a1 a1

1
2 a2

b2 b1

b1 ∧ b2

a2

3a1

(3a1) ∧ a2

Figure 5. 2-vectors in the plane.

Example 8. In R
3 we see that i ∧ j 
= i ∧ k since the simple 2-vectors do not lie in a

common 2-dimensional vector subspace.

The following lemma will be useful later.

Lemma 1. Suppose that a1, . . . ak, b1, . . . bk lie in V , a k-dimensional vector subspace
of R

n. Let A and B be k × k matrices A = (a1, . . . , ak) and B = (b1, . . . , bk) ex-
pressed with respect to an orthonormal basis of V , and suppose that F is a k × k
matrix such that B = F A. Then we have the following:

1. If a1 ∧ · · · ∧ ak = b1 ∧ · · · ∧ bk 
= 0, then det A = det B and det F = 1.

2. If det F = 1, then a1 ∧ · · · ∧ ak = b1 ∧ · · · ∧ bk.

Proof. Since BT B = AT F T B = AT F T F A, if we do some grouping and regrouping
and take determinants, we obtain

det(bi · b j ) = det F det(ai · b j ) = (det F)2 det(ai · a j )

and

(det B)2 = det F det A det B = (det F)2 (det A)2.

If a1 ∧ · · · ∧ ak = b1 ∧ · · · ∧ bk 
= 0, then det(bi · b j ) = det(ai · a j ) > 0 and
det(ai · b j ) > 0. This forces det F = 1 and det A = det B 
= 0.

Suppose that det F = 1. Then {a1, . . . , ak} is linearly dependent if and only if
{b1, . . . , bk} is, in which case a1 ∧ · · · ∧ ak = b1 ∧ · · · ∧ bk = 0. If {a1, . . . , ak} and
{b1, . . . , bk} are independent, then we have det A, det B 
= 0. From this it follows that
det(ai · a j ) = det(bi · b j ) > 0 and det(ai · b j ) > 0, and we are done.
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4. OPERATIONS ON SIMPLE k-VECTORS. Although we have introduced
simple k-vectors, they are not yet true vectors in a vector space.

It turns out to be convenient, before embedding them in a vector space, to show that
we can carry out some operations on simple k-vectors that we normally carry out on
vectors—for example, multiplication by scalars or the dot product. We shall also show
how to take a wedge product of simple k- and m-vectors to obtain simple (k + m)-
vectors. The important step in these definitions is to show that they are well-defined,
since we operate with representatives (a1, . . . , ak) of the simple k-vectors.

Once we have defined these operations, we shall show how to add simple k-vectors
and obtain a vector space.

Scalar multiplication.

Definition 5. For λ ∈ R and a simple k-vector a1 ∧ · · · ∧ ak , we define λ(a1 ∧ · · · ∧
ak) = a1 ∧ · · · ∧ λai ∧ · · · ∧ ak for i = 1, . . . , k. By −(a1 ∧ · · · ∧ ak) we shall mean
(−1)(a1 ∧ · · · ∧ ak).

In Figure 6 we show two different ways we can represent 2(a1 ∧ a2) as an oriented
parallelogram. Of course the two oriented parallelograms are equivalent.

a2

a1 ∧ a2

a2

a1

2(a1 ∧ a2)

a1

2a2

2a1

Figure 6. Two representations of a scalar product.

Proposition 2. Multiplication of a simple k-vector by a scalar is well-defined.

Proof. We suppose λ 
= 0 and {a1, . . . , ak} an independent set since otherwise every-
thing is trivial.

Consider the case where i = 1 and assume (a1, . . . , ak) ∼ (b1, . . . , bk). Set
(c1, . . . , ck) = (λa1, . . . , ak) and (d1, . . . , dk) = (λb1, . . . , bk). Clearly

span{c1, . . . , ck} = span{d1, . . . , dk}.
We easily compute

vol(c1, . . . , ck) = |λ|√det(ai · a j ) = |λ|√det(bi · b j ) = vol(d1, . . . , dk)

and det(ci · d j ) = λ2 det(ai · b j ) > 0 so that (c1, . . . , ck) ∼ (d1, . . . , dk). Thus scalar
multiplication makes sense if i = 1.
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For general i and j , we set

(c1, . . . , ck) = (a1, . . . , λai , . . . , ak) and (d1, . . . , dk) = (a1, . . . , λa j , . . . , ak)

and show as before that (c1, . . . , ck) ∼ (d1, . . . , dk).

Remark 3. 0(a1 ∧ · · · ∧ ak) = 0.

Remark 4. Scalar multiplication has an obvious geometric interpretation: If you mul-
tiply one edge of an oriented parallelepiped by λ, then the volume changes by a factor
of |λ|. If λ > 0, then the orientation is unchanged, but if λ < 0, then the orientation is
reversed.

We now show that the set of simple k-vectors in a k-dimensional vector subspace
can be thought of as a one-dimensional space.

Proposition 3. If a 
= 0 is a simple k-vector in a k-dimensional vector subspace V of
R

n, then every simple k-vector in V is a scalar multiple of a.
Specifically, if a = a1 ∧ · · · ∧ ak 
= 0 and if b = b1 ∧ · · · ∧ bk lies in V , then b = αa

where α = det(αi j ) and bi = ∑k
j=1 αi j a j for i = 1, . . . , k.

Proof. Since {a1, . . . , ak} is a basis for V , the αi j ’s are uniquely determined, and we
set α = det(αi j ). We know that αa = (αa1) ∧ a2 ∧ · · · ∧ ak . Let us set (c1, . . . , ck) =
(αa1, a2, . . . , ak).

If α = 0, then {b1, . . . , bk} and {c1, . . . , ck} are linearly dependent sets and b =
αa = 0.

Now assume α 
= 0. It is easily shown that

det(bi · b j ) = α det(ai · b j ) = α2 det(ai · a j ).

This amounts to det(bi · b j ) = det(ci · b j ) = det(ci · c j ). Since α2 det(ai · a j ) > 0, we
see that det(ci · b j ) = det(bi · b j ) > 0. Thus (b1, . . . , bk) ∼ (c1, . . . , ck) and we are
done.

The dot product.

Definition 6. The dot product of two simple k-vectors is given by

(a1 ∧ · · · ∧ ak) · (b1 ∧ · · · ∧ bk) = det

⎛
⎜⎝

a1 · b1 . . . a1 · bk
...

...

ak · b1 . . . ak · bk

⎞
⎟⎠ .

Proposition 4. The dot product of simple k-vectors is well-defined.

Proof. It suffices to show that if b1 ∧ · · · ∧ bk = c1 ∧ · · · ∧ ck 
= 0, then det(ai · b j ) =
det(ai · c j ).

Let V be the k-dimensional vector subspace of R
n spanned by both {b1, . . . , bk}

and {c1, . . . , ck}. Let {v1, . . . , vk} be an orthonormal basis for V and extend it to an
orthonormal basis {v1, . . . , vn} for R

n . For x ∈ R
n we can write x = ∑n

i=1 χivi and
then define the orthogonal projection of x onto V by x ′ = ∑k

i=1 χivi . Notice that if
y ∈ V , then x · y = x ′ · y.
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Let A′, B, and C be the k × k matrices A′ = (a1
′, . . . , ak

′), B = (b1, . . . , bk), and
C = (c1, . . . , ck) computed with respect to the orthonormal basis for V , where ai

′ is
the orthogonal projection of ai onto V . By Lemma 1 we know that det B = det C .
Then

det(ai · b j ) = det(ai
′ · b j ) = det(A′T B) = (det A′)(det B)

= (det A′)(det C) = det(ai
′ · c j ) = det(ai · c j ).

Remark 5. If a and b are simple k-vectors and λ ∈ R, then λ(a · b) = (λa) · b =
a · (λb) and a · b = b · a. We also introduce the symbol |a| for

√
a · a and call this

the magnitude of a. Notice that if a = a1 ∧ · · · ∧ ak , then |a| = √
det(ai · a j ) =

vol(a1, . . . , ak).

Example 9. Some of the simplest 2-vectors in R
3 are i ∧ j, i ∧ k, and j ∧ k. When we

compute their dot products,

(i ∧ j) · (i ∧ j) = (i ∧ k) · (i ∧ k) = (j ∧ k) · (j ∧ k) = 1,

(i ∧ j) · (i ∧ k) = (i ∧ j) · (j ∧ k) = (i ∧ k) · (j ∧ k) = 0,

then we see that they behave like an “orthonormal” set.

Example 10. To gain some feeling for the geometric significance of dot product, we
construct an example of two oriented rectangles (or 2-vectors) in R

3 at an angle of θ

with one another.
We start with i ∧ j, an oriented, magnitude-1 rectangle in the x1x2-plane. We rotate

j “up” out of the x1x2-plane by an angle θ , producing the vector c = (0, cos θ, sin θ).
We next rotate R

3 about the x3-axis by an amount φ, and applying this rotation to the
vectors i and c; we obtain, respectively,

a = (cos φ, sin φ, 0) and b = (− sin φ cos θ, cos φ cos θ, sin θ).

Then a ∧ b may be considered an oriented, magnitude-1 rectangle making an angle of
θ with the x1x2-plane and with i ∧ j (see Figure 7).

x1

x3

φ
a

b

θ

x2

Figure 7. 2-vector at an angle θ with x1x2-plane.

We calculate their dot product:

(a ∧ b) · (i ∧ j) = cos θ = |a ∧ b| |i ∧ j| cos θ.

Notice the resemblance to the dot product of ordinary vectors.
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Remark 6. If one of the vectors of {a1, . . . , ak} is orthogonal to all of the vectors of
{b1, . . . , bk}, then a1 ∧ · · · ∧ ak must be “orthogonal” to b1 ∧ · · · ∧ bk in the sense that
(a1 ∧ · · · ∧ ak) · (b1 ∧ · · · ∧ bk) = 0.

We are familiar with the fact that in a vector space two vectors are equal if and
only if all their components are equal and that in a Euclidean space components can
be computed by taking dot products. A similar result holds for simple k-vectors.

Proposition 5. If a and b are simple k-vectors, then a = b if and only if a · c = b · c
for all simple k-vectors c.

Proof. Suppose that a · c = b · c for all simple k-vectors c ∈ R
n . Then a · a = a · b =

b · b, which, if a = a1 ∧ · · · ∧ ak and b = b1 ∧ · · · ∧ bk , amounts to det(ai · a j ) =
det(ai · b j ) = det(bi · b j ). We see from this that a 
= 0 if and only if b 
= 0, and
vol(a) = vol(b). Further, if a and b lie in the same k-dimensional vector subspace,
then they must have the same orientation.

The only possibility for a 
= b is if a, b 
= 0 and V = span{a1, . . . , ak} 
= W =
span{b1, . . . , bk}, so let us suppose that we have precisely that situation. We extend
{a1, . . . , ak} to {a1, . . . , am}, a basis for V + W , in such a way that ak+1, . . . , am are
orthogonal to V . Next we construct an orthonormal basis {w1, . . . , wk} for W . We
know by Proposition 3 that b = (βw1) ∧ w2 ∧ · · · ∧ wk for a suitable scalar β and that
β 
= 0 since b 
= 0. We may, without loss of generality, suppose that w1 has a nonzero
ak+1 component, that is, that w1 · ak+1 
= 0. Let us set c = ak+1 ∧ w2 ∧ · · · ∧ wk . It
is an easy computation that b · c = βw1 · ak+1 
= 0. However a · c = 0 since ak+1 is
orthogonal to V . This contradiction gives us the desired conclusion.

Wedge products of simple k- and m-vectors.

Definition 7. We define the wedge product of the simple k-vector a1 ∧ · · · ∧ ak and
the simple m-vector b1 ∧ · · · ∧ bm by

(a1 ∧ · · · ∧ ak) ∧ (b1 ∧ · · · ∧ bm) = a1 ∧ · · · ∧ ak ∧ b1 ∧ · · · ∧ bm .

We give a “picture” of this operation in Figure 8.

��
��
��
��

��
��
��
��

ba

c

a b

a ∧ b ∧ c

a ∧ b
c

Figure 8. Wedge product of a 1- and a 2-vector.

Proposition 6. The wedge product of a simple k- and m-vector is well-defined.

Proof. It suffices to consider the case where a1 ∧ · · · ∧ ak = a′
1 ∧ · · · ∧ a′

k and show
that a1 ∧ · · · ∧ ak ∧ b1 ∧ · · · ∧ bm = a′

1 ∧ · · · ∧ a′
k ∧ b1 ∧ · · · ∧ bm .
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If {a1, . . . , ak, b1, . . . , bm} is a linearly dependent set, then the same must be true
for {a′

1, . . . , a′
k, b1, . . . , bm}, and our desired equality follows trivially. So we may as-

sume that {a1, . . . , ak, b1, . . . , bm} and {a′
1, . . . , a′

k, b1, . . . , bm} are independent sets.
Let V be the k-dimensional subspace span{a1, . . . , ak} = span{a′

1, . . . , a′
k} and W

the m-dimensional subspace span{b1, . . . , bm}. Next we construct an orthonormal ba-
sis {v1, . . . , vk+m} for V ⊕ W in such a way that {v1, . . . , vk} is a basis for V . (Because
V and W are not necessarily orthogonal, it does not follow that {vk+1, . . . , vk+m} is a
basis for W . See Figure 9.)

V

W
V ⊥

Figure 9. The subspaces V and W .

Let E and E ′ be the (k + m) × (k + m) matrices

E = (a1, . . . , ak, b1, . . . , bm) and E ′ = (a′
1, . . . , a′

k, b1, . . . , bm)

computed with respect to {v1, . . . , vk+m}. Define f : V ⊕ W → V ⊕ W to be the
linear transformation such that f (ai ) = a′

i and f (b j ) = b j for all i, j , and take F to
be the (k + m) × (k + m) matrix of f with respect to {v1, . . . , vk+m}. We see that
E ′ = F E . By Lemma 1, if we can show that det F = 1, then we are done.

Let A and A′ be the k × k matrices A = (a1, . . . , ak) and A′ = (a′
1, . . . , a′

k) com-
puted with respect to {v1, . . . , vk}. If we consider the restriction of f to V , we have
f |V : V → V . Let us take F ′ to be the k × k matrix of f |V computed with respect to
{v1, . . . , vk}. We see that A′ = F ′ A and that by Lemma 1, we have det F ′ = 1.

Now let {w1, . . . , wm} be an orthonormal basis for W and set

B = {v1, . . . , vk, w1, . . . , wm}.
Notice that B is a basis for V ⊕ W though not necessarily an orthonormal one. Suppose
we compute the (k + m) × (k + m) matrix G of f with respect to B. Since f |V carries
V to V and f |W is the identity map, it is seen that

G =
(

F ′ 0
0 I

)

where I is the m × m identity matrix.
Since F and G are matrices of f with respect to different bases, we have F =

T GT −1 for some square matrix T . Therefore det F = det G = det F ′ = 1, and we are
done.

The following result is immediate and trivial:

Proposition 7. The wedge product of simple k-, l-, and m-vectors is associative. That
is, a ∧ (b ∧ c) = (a ∧ b) ∧ c.
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Remark 7. We originally introduced a1 ∧ · · · ∧ ak as the symbol for a simple k-vector.
We can now also regard it as the product of k simple 1-vectors, parentheses being
rendered unnecessary by the associative law.

Linear transformations acting on simple k-vectors. In this subsection and the next
we briefly describe two topics for which, because we make no further use of them, we
include no proofs. However they have such strong geometric content that we feel they
merit our attention.

Proposition 8. Suppose that f : R
m → R

n is a linear transformation. If a1 ∧ · · · ∧ ak

and b1 ∧ · · · ∧ bk are simple k-vectors in R
m such that a1 ∧ · · · ∧ ak = b1 ∧ · · · ∧ bk,

then f (a1) ∧ · · · ∧ f (ak) = f (b1) ∧ · · · ∧ f (bk).

This result justifies the following:

Definition 8. If f : R
m → R

n is a linear transformation, then there is a transformation
∧k f of simple k-vectors of R

m to simple k-vectors of R
n given by

∧k f (a1 ∧ · · · ∧ ak) = f (a1) ∧ · · · ∧ f (ak).

Example 11. Let f : R
2 → R

2 be the linear transformation given by f (x1, x2) =
(x1 + 2x2, x2 − 1

2 x1). Then the result of applying ∧2 f to i ∧ j, namely, ∧2 f (i ∧ j) =
(i − 1

2 j) ∧ (2i + j), is displayed in Figure 10.
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�
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�

�
�
�

∧2 f (i ∧ j)

x1

x2

x2

x1

f

i ∧ j

Figure 10. ∧2 f applied to a 2-vector.

We cannot yet claim ∧k f is itself a linear transformation, but it will turn out that we
can treat it as such once we construct a vector space containing the simple k-vectors.

The Hodge star operator. Given a simple k-vector a in R
n , we would like to construct

a simple (n − k)-vector ∗a which is the “orthogonal complement” of a. It is much
simpler to do this once one has constructed a vector space of k-vectors, so we are
“cheating” by presenting it here, out of sequence.

Proofs of the following results may be found in [1] and [4]. They are valid in the
vector spaces of k-vectors and may be stated without the adjective “simple,” but we
are not yet quite entitled to do that.

Proposition 9. Let {u1, . . . , un} be an orthonormal basis for R
n and set u = u1 ∧

· · · ∧ un. For every simple k-vector a in R
n, where 0 ≤ k ≤ n, there is a unique simple

(n − k)-vector ∗a which satisfies

a ∧ b = (∗a · b) u

for every simple (n − k)-vector b in R
n.
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The transformation a �→ ∗a is the Hodge star operator. Notice that we have to
specify both R

n and u to define it. The choice of u is, in effect, a choice of “orientation”
for R

n . Figure 11 pictures the effect on simple 1- and 2-vectors in R
3.

∗b

b

a

∗a

Figure 11. The star operator on 1- and 2-vectors in R
3.

The following proposition exhibits the sense in which ∗a is an orthogonal comple-
ment to a. A proof can be found in [4].

Proposition 10. Let u be as in Proposition 9. Choose a, a simple k-vector in R
n. Let

{v1, . . . , vn} be an orthonormal basis for R
n with the property that a = α (v1 ∧ · · · ∧

vk) for some scalar α, and let λ = ±1 such that v1 ∧ · · · ∧ vn = λ u. (Such v1, . . . , vn

and λ always exist.) Then

∗a = λ α (vk+1 ∧ vk+2 ∧ · · · ∧ vn).

Example 12. Consider the orthonormal basis {i, j, k} for R
3 and, in the spirit of

Proposition 9, take u = i ∧ j ∧ k. Then it can be shown that the familiar vector prod-
uct of vectors in R

3 is given by a × b = ∗(a ∧ b). In particular,

i × j = ∗(i ∧ j) = k, j × k = ∗(j ∧ k) = i, and k × i = ∗(k ∧ i) = j.

5. THE VECTOR SPACE Λk
R

n. We do not yet know how to add simple k-vectors.
It is the one operation we need to turn them into a vector space.

Suppose we take Sk to be the set of simple k-vectors in some fixed R
n . For every

simple k-vector a we define a map φa : Sk → R by φa(b) = a · b. Notice there is no
problem multiplying φa’s by scalars or adding them: for λi ∈ R and simple k-vectors
ai = ai1 ∧ · · · ∧ aik , we set

(λ1φa1 + · · · + λmφam )(b) = λ1 a1 · b + · · · + λm am · b

where b ∈ Sk . For 1 ≤ k ≤ n, if we take 	k
R

n to be the set of finite linear combina-
tions of φa’s with the usual operations of function addition and multiplication by real
numbers, then the following holds:

Theorem 1. 	k
R

n is a vector space over R.

Next notice that by Proposition 5 there is a one-to-one correspondence between {φa :
a ∈ Sk} and Sk , so that we can, if we wish, identify φa and a. It is also easily seen
that λ φa = φλ a , so that multiplication by a scalar amounts to the same thing whether
dealing with simple k-vectors or elements of 	k

R
n . Because of this we will write

λ1 φa1 + · · · + λm φam as λ1 a1 + · · · + λm am

and we can, in a natural way, identify Sk with a subset of 	k
R

n . Thus we have solved
the problem of adding simple k-vectors and forming them into a vector space.
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(This tells us how to define 	k
R

n for 1 ≤ k ≤ n. We can add to this list by taking
	k

R
n = {0} when k > n. The reason for this is that a1 ∧ · · · ∧ ak = 0 if k > n. It is

also standard and convenient to take 	0
R

n to be R.)
Next, for

∑
i λi ai ∈ 	k

R
n and b a simple k-vector, let us replace the function sym-

bolism
(∑

i λi ai

)
(b) by

(∑
i λi ai

) · b. Since
(∑

i λi ai

) · b = ∑
i λi (ai · b), we can ex-

tend the definition of dot product to 	k
R

n by setting

(∑
i

λiai

) · (∑
j

ξ j b j

) =
∑
i, j

λiξ j (ai · b j )

where the ai ’s and b j ’s are simple k-vectors. It must be checked that this is a well-
defined extension. If we can write b ∈ 	k

R
n both as

∑
j ξ j b j and

∑
j ξ ′

j b
′
j , it is

straightforward to see that
∑

i, j λiξ j (ai · b j ) = ∑
i, j λiξ

′
j (ai · b′

j ). We then have the fol-
lowing easy theorem:

Theorem 2. If λ ∈ R and a, b, c ∈ 	k
R

n, where 1 ≤ k ≤ n, then the following hold:

1. a · b = b · a.

2. λ(a · b) = (λa) · b = a · (λb).

3. a · (b + c) = a · b + a · c.

Example 13. Recall that in 	2
R

3 we have seen that { i ∧ j, i ∧ k, j ∧ k } is an or-
thonormal set. Thus for a = α1 (i ∧ j) + α2 (i ∧ k) + α3 (j ∧ k) and b = β1 (i ∧ j) +
β2 (i ∧ k) + β3 (j ∧ k), by repeatedly applying Theorem 2, we have a · b = α1β1 +
α2β2 + α3β3.

Next we want to find a basis for the vector space 	k
R

n .
Suppose we have simple k-vectors a = a1 ∧ · · · ∧ ak and b = b1 ∧ · · · ∧ bk . Since

a · b = det(ai · b j ) and a is completely determined by values of the form a · b, we see
that a must be linear in each of the vectors a1, . . . , ak . For example, for the first factor
of a we have

(λa1) ∧ a2 ∧ · · · ∧ ak = λ (a1 ∧ a2 ∧ · · · ∧ ak)

and

(a1 + a′
1) ∧ a2 ∧ · · · ∧ ak = (a1 ∧ a2 ∧ · · · ∧ ak) + (a′

1 ∧ a2 ∧ · · · ∧ ak).

We can use this idea to find bases for 	k
R

n .

Example 14. Consider the special case 	2
R

3. Every simple 2-vector here has the
form

a = (α1 i + α2 j + α3 k) ∧ (α′
1 i + α′

2 j + α′
3 k).

Appealing repeatedly to linearity, we can rewrite this as

a = α1α
′
1(i ∧ i) + α1α

′
2(i ∧ j) + α1α

′
3(i ∧ k) + · · · + α3α

′
3(k ∧ k).

Notice that 2-vectors with repetitions, such as i ∧ i, vanish, and other 2-vectors can be
reversed if they are also sign-changed, as in j ∧ i = −i ∧ j. So we can ultimately write
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a = β12 (i ∧ j) + β13 (i ∧ k) + β23 (j ∧ k) (1)

for appropriate scalars βi j . Since every 2-vector is a linear combination of simple ones,
it follows that every element of 	2

R
3 has the form of (1). Moreover { i ∧ j, i ∧ k,

j ∧ k } is an independent set. To see this, suppose c = γ12 (i ∧ j) + γ13 (i ∧ k) +
γ23 (j ∧ k) = 0. Then γ12 = c · (i ∧ j) = 0, and, in a similar fashion, γ13 = γ23 = 0.
Thus { i ∧ j, i ∧ k, j ∧ k } is not only an orthonormal set but a basis for 	2

R
3.

The reasoning of Example 14 is readily extended and generalized to give us the
following:

Theorem 3. If 1 ≤ k ≤ n and { u1, . . . , un} is an orthonormal basis for R
n, then the

set of k-vectors of the form ui1 ∧ · · · ∧ uik , such that i1 < · · · < ik , is an orthonormal
basis for 	k

R
n.

Example 15. If { u1, u2, u3, u4} is an orthonormal basis for R
4, then an orthonormal

basis for 	2
R

4 consists of the elements

u1 ∧ u2, u1 ∧ u3, u1 ∧ u4, u2 ∧ u3, u2 ∧ u4, u3 ∧ u4

while an orthonormal basis for 	3
R

4 consists of

u1 ∧ u2 ∧ u3, u1 ∧ u2 ∧ u4, u1 ∧ u3 ∧ u4, u2 ∧ u3 ∧ u4.

Remark 8. Knowing Theorem 3 it is easily seen that if { u1, . . . , un} is any basis for
R

n , then { ui1 ∧ · · · ∧ uik : i1 < · · · < ik} is a basis for 	k
R

n and that dim 	k
R

n = (n
k

)
.

We also want, of course, to extend the notion of wedge product to 	k
R

n . This can
be done by setting

(∑
i

λi ai

) ∧ (∑
j

ξ j b j

) =
∑
i, j

λiξ j (ai ∧ b j )

where the ai ’s and b j ’s are simple k- and m-vectors respectively. As in the case of the
dot product, it can be shown that the wedge product is well-defined; however the proof
is not as simple and we do not go into it here. If we accept this definition, we can then
easily establish the following:

Theorem 4. Suppose that a and b are k- and m-vectors respectively, that c and d are
r-vectors, and λ ∈ R. Then the following hold:

1. λ (a ∧ b) = (λ a) ∧ b = a ∧ (λ b).

2. a ∧ (c + d) = a ∧ c + a ∧ d.

3. a ∧ (b ∧ c) = (a ∧ b) ∧ c.

4. a ∧ b = (−1)kmb ∧ a.

Example 16. It is no longer necessarily true in 	k
R

n that all k-vectors are simple. If
a is a simple k-vector, then it easily follows that a ∧ a = 0. But if, for example, we
take an orthonormal basis {u1, u2, u3, u4} for R

4, then it is straightforward to show for
a = (u1 ∧ u2) + (u3 ∧ u4) that a ∧ a 
= 0.
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6. APPLICATIONS.

k-vectors determined by k + 1 points. We are familiar with vectors of the form
A0 A1 where A0 and A1 are points in R

n . We generalize this to k-vectors of the form
A0 · · · Ak , and it is convenient in that setting to picture k-vectors as oriented simplexes
rather than oriented parallelepipeds.

The simplex S determined by A0, A1, . . . , Ak , points in R
n , is

S =
{

t0 A0 + · · · + tk Ak : ti ∈ R, 0 ≤ ti ,

k∑
i=0

ti = 1

}
.

S is the smallest convex set containing A0, . . . , Ak . We say that A0, . . . , Ak are the
vertices of S. If we also endow S with an orientation, we can represent the class of
oriented k-simplexes equivalent to it by a simple k-vector:

A0 A1 · · · Ak
def= 1

k! (A0 A1) ∧ (A0 A2) ∧ · · · ∧ (A0 Ak) (2)

where each A0 Ai is a vector in R
n (see Figure 12). The factor 1

k! is the ratio of the
volume of the simplex represented by A0 A1 · · · Ak to that of the parallelepiped repre-
sented by (A0 A1) ∧ (A0 A2) ∧ · · · ∧ (A0 Ak).

A0

A1

A0

A1

A2

A0

A1

A2

A3

A0 A1 A2 A3A0 A1 A2A0 A1

Figure 12. k-vectors of the form A0 · · · Ak .

Theorem 5. For a simplex A0 · · · Ak we have the following:

1. If we interchange Ai and A j , where i < j , then

A0 · · · A j · · · Ai · · · Ak = −A0 · · · Ai · · · A j · · · Ak .

2. If k ≥ 2, then

k∑
i=0

(−1)i A0 A1 · · · Ai · · · Ak = 0,

where Ai denotes omission of Ai .

Proof. 1. First consider the case where i = 0 and j = 1. Notice that

A0 A1 · · · Ak = 1

k! (A0 A1) ∧ (A0 A1 + A1 A2) ∧ · · · ∧ (A0 A1 + A1 Ak)
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= − 1

k! (A1 A0) ∧ (A1 A2) ∧ · · · ∧ (A1 Ak)

= −A1 A0 A2 · · · Ak .

The cases where j > 1 follow similarly. For all other values of i , where j > i ≥ 1,
the proof is an obvious consequence of (2).

2. Notice that

A1 A2 · · · Ak = 1

(k − 1)! (A1 A2) ∧ (A1 A3) ∧ · · · ∧ (A1 Ak)

= 1

(k − 1)! (A1 A0 + A0 A2) ∧ (A1 A0 + A0 A3) ∧ · · · ∧ (A1 A0 + A0 Ak).

When we multiply this out, because (A1 A0) ∧ (A1 A0) = 0, we must have

A1 A2 · · · Ak = 1

(k − 1)!
{
(A0 A2) ∧ (A0 A3) ∧ · · · ∧ (A0 Ak)

+
k∑

i=2

(A0 A2) ∧ · · · ∧ (A0 Ai−1) ∧ (A1 A0) ∧ (A0 Ai+1) ∧ · · · ∧ (A0 Ak)
}

= A0 A2 A3 · · · Ak

+ 1

(k − 1)!

{
k∑

i=2

(−1)i−1(A0 A1) ∧ (A0 A2) ∧ · · · ∧ (A0 Ai) ∧ · · · ∧ (A0 Ak)

}

=
k∑

i=1

(−1)i−1 A0 A1 · · · Ai · · · Ak .

This theorem and its proof can also be found in [4].
The law of vector addition is usually understood in terms of a triangle as in Figure

13. Part 2 of Theorem 5 can be interpreted as a generalization of the law of vector
addition. It says, in effect, that if the (k − 1)-dimensional faces of a k-simplex are
thought of as (k − 1)-vectors with the proper orientations, then the sum of these “face-
vectors” is 0.

a

b

c

c = a + b

Figure 13. Law of vector addition.

Example 17. From Theorem 5, the “law of vector addition” for 2-simplexes is

A1 A2 A3 − A0 A2 A3 + A0 A1 A3 − A0 A1 A2 = 0.

We provide a picture of how this works in Figure 14 by “unfolding” a 3-simplex
A0 A1 A2 A3 into the plane and indicating with circular arrows on the “unfolded” ver-
sion the orientation of each 2-dimensional face of the 3-simplex.
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A0

A1

A2

A3

A3 A1 A3

A0 A2

A3

A0 A1 A3 A1 A2 A3

−A0 A1 A2

−A0 A2 A3

Figure 14. Vector addition law for 2-vectors.

The law of cosines. If 1 ≤ k ≤ n, we know that 	k
R

n is isomorphic to R
m where

m = (n
k

)
. It is then easy to see that the Schwarz inequality holds in 	k

R
n , that is, that

|a · b| ≤ |a| |b| if a and b are k-vectors in R
n . Thus we can do the following:

Definition 9. If a, b are nonzero k-vectors in R
n , then we define the angle between a

and b to be the unique θ such that 0 ≤ θ ≤ π and

cos θ = a · b

|a| |b| .

Example 18. If we glance back at Example 10 where the 2-vectors i ∧ j and a ∧ b
were constructed to have the angle θ between them in the same sense as two planes in
R

3, we see that we also have an angle of θ between them in the sense of Definition 9.

For an n-simplex A0 . . . An , n ≥ 2, it is then possible to talk about the angle between
any two faces and to generalize the law of cosines from triangles to simplexes. (This
result is stated in [3].) Let Fi be the (n − 1)-dimensional face A0 . . . Ai . . . An that does
not contain the vertex Ai , and let θi j be the angle between Fi and Fj .

Theorem 6 (Law of cosines for n-simplexes). For any face Fi of a simplex A0 . . . An

we have

|Fi |2 =
∑
j 
=i

|Fj |2 + 2
∑
j<l

j, l 
=i

(−1) j+l|Fj ||Fl | cos θ j l .

Proof. Since |Fi |2 = Fi · Fi , by the second part of Theorem 5 we may write

|Fi |2 =
(∑

j 
=i

(−1) j+1 Fj

)
·
(∑

l 
=i

(−1)l+1 Fl

)

=
∑
j 
=i

|Fj |2 + 2
∑
j<l

j, l 
=i

(−1) j+l|Fj ||Fl | cos θ j l,

where 0 ≤ j, l ≤ n.
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The parallelogram law. The parallelogram law states that for any given parallelo-
gram, ∑

sides2 =
∑

diagonals2.

We generalize this to n-dimensional parallelepipeds.
Suppose we have an n-dimensional parallelepiped P with the vectors a1, . . . , an as

its edges. If the origin is a vertex of the parallelepiped, then, in general, by vertices of
P we mean points of the form

A =
n∑

i=1

βi ai where βi = 0, 1,

and we will call (β1, . . . , βn) the binary sequence associated with A. We say that two
vertices A and B are adjacent provided AB = ±ai for some i .

We define Fi = a1 ∧ · · · ∧ ai ∧ · · · ∧ an and we want to consider this to be a face
of P. However we must be careful to notice here that we are treating a face as an
(n − 1)-vector rather than a point-set, and we could conceivably have two different
parallel (n − 1)-dimensional faces, F and F′, considered as point-sets, as in Figure 15,
which are associated with the same face Fi considered as an (n − 1)-vector. This is
an important distinction; in the formula we gave for the 2-dimensional version of the
parallelogram law, the faces of the paralellogram were treated as line segments, that
is, as point-sets. In the generalization we shall construct, it is convenient to treat faces
as simple (n − 1)-vectors, and this will lead to a somewhat different formula.

F

F′

Figure 15. Different point-set faces.

In this n-dimensional setting, we consider diagonals of P to be oriented simplexes
associated with vertices. If A is a vertex of P, then we define the associated diagonal
to be the simple (n − 1)-vector

DA = A1 · · · An where AAi = ±ai for i = 1, . . . , n.

Thus A1, . . . , An are the vertices adjacent to A and the requirement that AAi = ±ai

specifies each one uniquely. See Figure 16.
Let us note some simple relations between the objects we have introduced: Suppose

A has the associated binary sequence (β1, . . . , βn). If βi = 0, it is not hard to see that
AAi = ai , while if βi = 1, we have AAi = −ai . Thus

AAi = (−1)βi ai .

Set ιA = (−1)β1+···+βn . It follows from (2) that

Fi = a1 ∧ · · · ∧ ai ∧ · · · ∧ an = (−1)βi ιA (n − 1)! AA1 · · · Ai · · · An. (3)
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A3

A2

A1

a1

a2

a3

Figure 16. A diagonal of P.

By Theorem 5, we have A1 A2 · · · An = ∑n
i=1(−1)i+1 AA1 · · · Ai · · · An . From the def-

inition of DA and (3), we obtain

DA =
n∑

i=1

(−1)βi +i+1ιA

(n − 1)! Fi . (4)

Thus, for example, in Figure 16, we have n = 3, (β1, β2, β3) = (1, 0, 1), ιA = 1,
and DA = − 1

2 (F1 + F2 + F3).

Theorem 7 (Parallelogram law). For an n-dimensional parallelepiped P, n ≥ 2,
with faces Fi , vertices A, and diagonals DA, we have

∑
A

|DA|2 = 2n

((n − 1)!)2

n∑
i=1

|Fi |2. (5)

Proof. Let us suppose that for each vertex A the associated binary sequence is
(β A

1 , . . . , β A
n ). Appealing to (4), we have

∑
A

|DA|2 =
∑

A

DA · DA = 1

((n − 1)!)2

n∑
i, j=1

(−1)i+ j
∑

A

(−1)
β A

i +β A
j (Fi · Fj ). (6)

Fix i, j such that i 
= j . Notice that (β A
i , β A

j ) = (0, 0), (0, 1), (1, 0), or (1, 1) and each
possibility occurs in exactly one quarter of the terms of (6) which contain i and j . Thus

∑
A

(−1)
β A

i +β A
j (Fi · Fj ) = 0 whenever i 
= j.

Since the total number of vertices is 2n , we see that (6) reduces to (5).

The Pythagorean theorem. In its higher-dimensional version, the Pythagorean theo-
rem can be thought of as saying the following: Given an orthogonal n-simplex, n ≥ 2,
the volume squared of its “oblique” face is the sum of the volumes squared of the
other faces. We say that an n-simplex A0 A1 · · · An is orthogonal if, for some labelling
of its vertices, the angle between the faces A0 · · · A j · · · An and A0 · · · Al · · · An is π/2
whenever 1 ≤ j, l ≤ n and j 
= l. (Here we mean angle in the sense of Definition 9.)
Under these circumstances, we call A1 · · · An the oblique face of the simplex.
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Example 19. Let {u1, . . . , un} be an orthonormal basis for R
n . If A0 is the origin and

Ai = ui for 1 ≤ i ≤ n, then A0 · · · Ai · · · An = 1
(n−1)! u1 ∧ · · · ∧ ui ∧ · · · ∧ un . It is

clear that A0 A1 · · · An is an orthogonal n-simplex.

Theorem 8. If A0 A1 · · · An, n ≥ 2, is an orthogonal n-simplex with oblique face
A1 · · · An, then

|A1 · · · An|2 =
n∑

i=1

|A0 · · · Ai · · · An|2.

Proof. This follows from the law of cosines (Theorem 6) since cos(θ j l) is 0 if j 
= l.

The Binet-Cauchy formula. As a final application we present a proof of a purely
algebraic result, the Binet-Cauchy formula. See [2] or [4] for an alternative proof.

Suppose that 1 ≤ k ≤ n and we are given k × n and n × k matrices:

A =
⎛
⎜⎝

a11 . . . a1n
...

...

ak1 . . . akn

⎞
⎟⎠ and B =

⎛
⎜⎝

b11 . . . b1k
...

...

bn1 . . . ank

⎞
⎟⎠ .

We describe the k × k submatrices of A and B in the following way:

Ai1...ik =
⎛
⎜⎝

a1i1 . . . a1ik
...

...

aki1 . . . akik

⎞
⎟⎠ and Bi1...ik =

⎛
⎜⎝

bi11 . . . bi1k
...

...

bik 1 . . . aik k

⎞
⎟⎠

where it is understood that i1, . . . , ik ∈ {1, 2, . . . , n} and i1 < i2 < · · · < ik .

Theorem 9 (Binet-Cauchy).

det(AB) =
∑

i1<···<ik

(
det Ai1...ik

) (
det Bi1...ik

)
.

Proof. Let {u1, . . . , un} be the standard orthonormal basis for R
n , that is, ui =

(0, . . . , 0, 1, 0, . . . , 0) where the 1 is in the i th position. Set

ai =
n∑

j=1

ai j u j and bi =
n∑

j=1

b jiu j ,

that is, the ai ’s and bi ’s are the row and column vectors of A and B respectively. Next
take a and b to be the simple k-vectors

a = a1 ∧ · · · ∧ ak and b = b1 ∧ · · · ∧ bk .

We know by Theorem 3 that {ui1 ∧ · · · ∧ uik : i1 < · · · < ik} is an orthonormal basis
for 	k

R
n , so we should be able to write a and b in terms of this basis. Using the

definition of dot product, we easily calculate that a · (ui1 ∧ · · · ∧ uik ) = det Ai1...ik and
that a similar result holds for b. Thus

a =
∑

i1<···<ik

(det Ai1...ik ) ui1 ∧ · · · ∧ uik and b =
∑

i1<···<ik

(det Bi1...ik ) ui1 ∧ · · · ∧ uik .
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Finally we have

det(AB) = det(ai · b j ) = a · b =
∑

i1<···<ik

(
det Ai1...ik

) (
det Bi1...ik

)
,

and we are done.
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